Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 13, 2015

Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions

  • Eleni A. Deliyanni , George Z. Kyzas , Kostas S. Triantafyllidis and Kostas A. Matis
From the journal Open Chemistry


This work is a systematic review of the literature over the past decade of the application of activated carbon (microporous or mesoporous) as adsorbents for the removal of heavy metals, focusing especially on lead (Pb) and arsenic (As) ions from the aqueous phase. Classical examples from our lab are also given. Activated carbon is known to provide a high surface area for adsorption. Generally, surface modification is typically required, such as oxidation, treatment with ammonia or even impregnation with ferric ion, etc. and the adsorbent material may originate from various sources. The pristine materials, after modification and those after batch-wise adsorption, were characterized by available techniques (BET analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal analyses, X-ray photoelectron spectroscopy). Adsorption isotherms, thermodynamics and kinetics of the process are also discussed. Selected studies from the literature are examined in comparison with other adsorbents. The role of chemistry in the metals adsorption/removal was investigated.

Graphical Abstract


[1] or-reactivation (access 28 Aug 2014), Search in Google Scholar

[2] reactivation/faq (access 28 Aug 2014), Search in Google Scholar

[3] Ahn C.K., Park D., Woo S.H.,Park J.M., Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants, J. Hazard. Mater., 2009, 164, 1130- 1136. 10.1016/j.jhazmat.2008.09.036Search in Google Scholar PubMed

[4] Amirnia S., Margaritis A.,Ray M., Adsorption of mixtures of toxic metal ions using non-viable cells of saccharomyces cerevisiae, Adsorpt. Sci. Technol., 2012, 30, 43-63. 10.1260/0263-6174.30.1.43Search in Google Scholar

[5] Amuda O.S., Giwa A.A.,Bello I.A., Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J., 2007, 36, 174-181. 10.1016/j.bej.2007.02.013Search in Google Scholar

[6] Asouhidou D.D., Triantafyllidis K.S., Lazaridis N.K., Matis K.A., Kim S.S.,Pinnavaia T.J., Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons, Micropor. Mesopor. Mater., 2009, 117, 257-267. 10.1016/j.micromeso.2008.06.034Search in Google Scholar

[7] Babel S.,Kurniawan T.A., Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 2004, 54, 951-967. 10.1016/j.chemosphere.2003.10.001Search in Google Scholar PubMed

[8] Baccar R., Bouzid J., Feki M.,Montiel A., Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions, J. Hazard. Mater., 2009, 162, 1522-1529. 10.1016/j.jhazmat.2008.06.041Search in Google Scholar PubMed

[9] Baniamerian M.J., Moradi S.E., Noori A.,Salahi H., The effect of surface modification on heavy metal ion removal from water by carbon nanoporous adsorbent, Appl. Surf. Sci., 2009, 256, 1347-1354. 10.1016/j.apsusc.2009.08.106Search in Google Scholar

[10] Bilal M., Shah J.A., Ashfaq T., Gardazi S.M.H., Tahir A.A., Pervez A., et al., Waste biomass adsorbents for copper removal from industrial wastewater—A review, J. Hazard. Mater., 2013, 263, Part 2, 322-333. 10.1016/j.jhazmat.2013.07.071Search in Google Scholar PubMed

[11] Budaeva A.D.,Zoltoev E.V., Porous structure and sorption properties of nitrogen-containing activated carbon, Fuel, 2010, 89, 2623-2627. 10.1016/j.fuel.2010.04.016Search in Google Scholar

[12] Câmpean A., Tertiş M.,Sǎndulescu R., Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode, Cent. Eur. J. Chem., 2011, 9, 688-700. 10.2478/s11532-011-0058-ySearch in Google Scholar

[13] Chang Q., Lin W.,Ying W.C., Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water, J. Hazard. Mater., 2010, 184, 515-522. 10.1016/j.jhazmat.2010.08.066Search in Google Scholar PubMed

[14] Chen W., Parette R., Zou J., Cannon F.S.,Dempsey B.A., Arsenic removal by iron-modified activated carbon, Water Res., 2007, 41, 1851-1858. 10.1016/j.watres.2007.01.052Search in Google Scholar PubMed

[15] Chuang C.L., Fan M., Xu M., Brown R.C., Sung S., Saha B., et al., Adsorption of arsenic(V) by activated carbon prepared from oat hulls, Chemosphere, 2005, 61, 478-483. 10.1016/j.chemosphere.2005.03.012Search in Google Scholar PubMed

[16] Dabioch M., Skorek R., Kita A., Janoska P., Pytlakowska K., Zerzucha P., et al., A study on adsorption of metals by activated carbon in a large-scale (municipal) process of surface water purification, Cent. Eur. J. Chem., 2013, 11, 742-753. 10.2478/s11532-013-0209-4Search in Google Scholar

[17] Deliyanni E., Arabatzidou A., Tzoupanos N.,Matis K., Adsorption of Pb2+ using mesoporous activated carbon and its effects on surface modifications, Adsorpt. Sci. Technol., 2012, 30, 627-645. 10.1260/0263-6174.30.7.627Search in Google Scholar

[18] Deliyanni E.,Bandosz T.J., Effect of carbon surface modification with dimethylamine on reactive adsorption of NOx, Langmuir, 2011, 27, 1837-1843. 10.1021/la1042537Search in Google Scholar PubMed

[19] Deliyanni E.,Bandosz T.J., Importance of carbon surface chemistry in development of iron-carbon composite adsorbents for arsenate removal, J. Hazard. Mater., 2011, 186, 667-674. 10.1016/j.jhazmat.2010.11.055Search in Google Scholar PubMed

[20] Deliyanni E., Bandosz T.J.,Matis K.A., Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal, J. Chem. Technol. Biotechnol., 2013, 88, 1058-1066. 10.1002/jctb.3938Search in Google Scholar

[21] Deliyanni E.A., Peleka E.N.,Matis K.A., Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents, J. Hazard. Mater., 2009, 172, 550-558. 10.1016/j.jhazmat.2009.07.130Search in Google Scholar PubMed

[22] Deng L., Su Y., Su H., Wang X.,Zhu X., Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis, J. Hazard. Mater., 2007, 143, 220-225. 10.1016/j.jhazmat.2006.09.009Search in Google Scholar PubMed

[23] Depci T., Kul A.R.,Önal Y., Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems, Chem. Eng. J., 2012, 200-202, 224-236. 10.1016/j.cej.2012.06.077Search in Google Scholar

[24] Eliyas A.E., Ljutzkanov L., Stambolova I.D., Blaskov V.N., Vassilev S.V., Razkazova-Velkova E.N., et al., Visible light photocatalytic activity of TiO2 deposited on activated carbon, Cent. Eur. J. Chem., 2013, 11, 464-470. 10.2478/s11532-012-0183-2Search in Google Scholar

[25] Fan L., Chen Y., Wang L.,Jiang W., Adsorption of Pb(II) ions from aqueous solutions by pyrolusite-modified activated carbon prepared from sewage sludge, Adsorpt. Sci. Technol., 2011, 29, 495-506. 10.1260/0263-6174.29.5.495Search in Google Scholar

[26] Fierro V., Muñiz G., Gonzalez-Sánchez G., Ballinas M.L.,Celzard A., Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis, J. Hazard. Mater., 2009, 168, 430-437. 10.1016/j.jhazmat.2009.02.055Search in Google Scholar PubMed

[27] Fu F.,Wang Q., Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 2011, 92, 407-418. 10.1016/j.jenvman.2010.11.011Search in Google Scholar PubMed

[28] Gu Z., Deng B.,Yang J., Synthesis and evaluation of ironcontaining ordered mesoporous carbon (FeOMC) for arsenic adsorption, Micropor. Mesopor. Mater., 2007, 102, 265-273. 10.1016/j.micromeso.2007.01.011Search in Google Scholar

[29] Gupta V.K., Ganjali M.R., Nayak A., Bhushan B.,Agarwal S., Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire, Chem. Eng. J., 2012, 197, 330-342. 10.1016/j.cej.2012.04.104Search in Google Scholar

[30] Hernández-Montoya V., Mendoza-Castillo D.I., Bonilla-Petriciolet A., Montes-Morán M.A.,Pérez-Cruz M.A., Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions, Journal of Analytical and Applied Pyrolysis, 2011, 92, 143-151. 10.1016/j.jaap.2011.05.008Search in Google Scholar

[31] Huang C.-C., Li H.-S.,Chen C.-H., Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 2008, 159, 523-527. 10.1016/j.jhazmat.2008.02.051Search in Google Scholar PubMed

[32] Jasiñska J., Krzyžyñska B.,Kozłowski M., Influence of activated carbon modifications on their catalytic activity in methanol and ethanol conversion reactions, Cent. Eur. J. Chem., 2011, 9, 925-931. 10.2478/s11532-011-0078-7Search in Google Scholar

[33] Jiang J.Q.,Ashekuzzaman S.M., Development of novel inorganic adsorbent for water treatment, Curr. Opinion Chem. Eng., 2012, 1, 191-199. 10.1016/j.coche.2012.03.008Search in Google Scholar

[34] Kalavathy M.H., Karthikeyan T., Rajgopal S.,Miranda L.R., Kinetic and isotherm studies of Cu(II) adsorption onto H3PO 4-activated rubber wood sawdust, J. Colloid Interface Sci., 2005, 292, 354-362. 10.1016/j.jcis.2005.05.087Search in Google Scholar

[35] Kasnejad M.H., Esfandiari A., Kaghazchi T.,Asasian N., Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption, J. Taiwan Inst. Chem. Eng., 2012, 43, 736-740. 10.1016/j.jtice.2012.02.006Search in Google Scholar

[36] Kim E.A., Seyfferth A.L., Fendorf S.,Luthy R.G., Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon, Water Res., 2011, 45, 453-460. 10.1016/j.watres.2010.08.045Search in Google Scholar

[37] Kyzas G.Z., Deliyanni E.A.,Matis K.A., Graphene oxide and its application as an adsorbent for wastewater treatment, J. Chem. Technol. Biotechnol., 2014, 89, 196-205. 10.1002/jctb.4220Search in Google Scholar

[38] Kyzas G.Z.,Kostoglou M., Green adsorbents for wastewaters: A critical review, Materials, 2014, 7, 333-364. 10.3390/ma7010333Search in Google Scholar

[39] Lalhmunsiama, Lee S.M.,Tiwari D., Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper(II) and lead(II), Chem. Eng. J., 2013, 225, 128-137. 10.1016/j.cej.2013.03.083Search in Google Scholar

[40] Le Leuch L.M.,Bandosz T.J., The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons, Carbon, 2007, 45, 568-578. 10.1016/j.carbon.2006.10.016Search in Google Scholar

[41] Lehmann M., Zouboulis A.I.,Matis K.A., Removal of metal ions from dilute aqueous solutions: A comparative study of inorganic sorbent materials, Chemosphere, 1999, 39, 881-892. 10.1016/S0045-6535(99)00031-4Search in Google Scholar

[42] Li Y., Du Q., Wang X., Zhang P., Wang D., Wang Z., et al., Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation, J. Hazard. Mater., 2010, 183, 583-589. 10.1016/j.jhazmat.2010.07.063Search in Google Scholar PubMed

[43] Lo S.-F., Wang S.-Y., Tsai M.-J.,Lin L.-D., Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons, Chem. Eng. Res. Des., 2012, 90, 1397-1406. 10.1016/j.cherd.2011.11.020Search in Google Scholar

[44] Lorenzen L., van Deventer J.S.J.,Landi W.M., Factors affecting the mechanism of the adsorption of arsenic species on activated carbon, Miner. Eng., 1995, 8, 557-569. 10.1016/0892-6875(95)00017-KSearch in Google Scholar

[45] Machida M., Fotoohi B., Amamo Y., Ohba T., Kanoh H.,Mercier L., Cadmium(II) adsorption using functional mesoporous silica and activated carbon, J. Hazard. Mater., 2012, 221-222, 220-227. 10.1016/j.jhazmat.2012.04.039Search in Google Scholar PubMed

[46] Marsh H.,Reinoso-Rodriguez F.: 2012, Activated carbon, London, UK, Elsevier. Search in Google Scholar

[47] Modin H., Persson K.M., Andersson A.,van Praagh M., Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines, J. Hazard. Mater., 2011, 189, 749-754. 10.1016/j.jhazmat.2011.03.001Search in Google Scholar PubMed

[48] Mohammadi S.Z., Karimi M.A., Afzali D.,Mansouri F., Preparation and characterization of activated carbon from Amygdalus Scoparia shell by chemical activation and its application for removal of lead from aqueous solutions, Cent. Eur. J. Chem., 2010, 8, 1273-1280. 10.2478/s11532-010-0106-zSearch in Google Scholar

[49] Mohammadi S.Z., Karimi M.A., Afzali D.,Mansouri F., Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation, Desalination, 2010, 262, 86-93. 10.1016/j.desal.2010.05.048Search in Google Scholar

[50] Mohan D.,Pittman Jr C.U., Arsenic removal from water/ wastewater using adsorbents-A critical review, J. Hazard. Mater., 2007, 142, 1-53. 10.1016/j.jhazmat.2007.01.006Search in Google Scholar PubMed

[51] Mondal P., Majumder C.B.,Mohanty B., Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, J. Hazard. Mater., 2008, 150, 695-702. 10.1016/j.jhazmat.2007.05.040Search in Google Scholar PubMed

[52] Moreno-Piraján J.C.,Giraldo L., Activated carbon from bamboo waste modified with iron and its application in the study of the adsorption of arsenite and arsenate, Cent. Eur. J. Chem., 2013, 11, 160-170. 10.2478/s11532-012-0138-7Search in Google Scholar

[53] Muñiz G., Fierro V., Celzard A., Furdin G., Gonzalez-Sánchez G., Ballinas M.L., Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II), J. Hazard. Mater., 2009, 165, 893-902. 10.1016/j.jhazmat.2008.10.074Search in Google Scholar PubMed

[54] Nowicki P., Kuszyńska I., Przepiórski J.,Pietrzak R., The effect of chemical activation method on properties of activated carbons obtained from pine cones, Cent. Eur. J. Chem., 2013, 11, 78-85. 10.2478/s11532-012-0140-0Search in Google Scholar

[55] Park H.G., Kim T.W., Chae M.Y.,Yoo I.K., Activated carboncontaining alginate adsorbent for the simultaneous removal of heavy metals and toxic organics, Process Biochem., 2007, 42, 1371-1377. 10.1016/j.procbio.2007.06.016Search in Google Scholar

[56] Peleka E.N.,Matis K.A., Water separation processes and sustainability, Ind. Eng. Chem. Res., 2011, 50, 421-430. 10.1021/ie100079sSearch in Google Scholar

[57] Phuengprasop T., Sittiwong J.,Unob F., Removal of heavy metal ions by iron oxide coated sewage sludge, J. Hazard. Mater., 2011, 186, 502-507. 10.1016/j.jhazmat.2010.11.065Search in Google Scholar

[58] Pyrzyńska K.,Bystrzejewski M., Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloid Surf. A., 2010, 362, 102-109. 10.1016/j.colsurfa.2010.03.047Search in Google Scholar

[59] Rivera-Utrilla J.,Sánchez-Polo M., Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ—cation interactions, Water Res., 2003, 37, 3335-3340. 10.1016/S0043-1354(03)00177-5Search in Google Scholar

[60] Rivera-Utrilla J., Sánchez-Polo M., Gómez-Serrano V., Álvarez P.M., Alvim-Ferraz M.C.M.,Dias J.M., Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 2011, 187, 1-23. 10.1016/j.jhazmat.2011.01.033Search in Google Scholar PubMed

[61] Seredych M., Hulicova-Jurcakova D., Lu G.Q.,Bandosz T.J., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 2008, 46, 1475-1488. 10.1016/j.carbon.2008.06.027Search in Google Scholar

[62] Shrestha R.M., Varga I., Bajtai J.,Varga M., Design of surface functionalization of waste material originated charcoals by an optimized chemical carbonization for the purpose of heavy metal removal from industrial waste waters, Microchem. J., 2013, 108, 224-232. 10.1016/j.microc.2012.11.002Search in Google Scholar

[63] Şváb M., Sukdolová K.,Şvábová M., Competitive adsorption of toxic metals on activated carbon, Cent. Eur. J. Chem., 2011, 9, 437-445. 10.2478/s11532-011-0021-ySearch in Google Scholar

[64] Tovar-Gómez R., Rivera-Ramírez D.A., Hernández-Montoya V., Bonilla-Petriciolet A., Durán-Valle C.J.,Montes-Morán M.A., Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO 3) 2-modified carbon, J. Hazard. Mater., 2012, 199-200, 290-300. 10.1016/j.jhazmat.2011.11.015Search in Google Scholar

[65] Treviño-Cordero H., Juárez-Aguilar L.G., Mendoza-Castillo D.I., Hernández-Montoya V., Bonilla-Petriciolet A.,Montes-Morán M.A., Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water, Industrial Crops and Products, 2013, 42, 315-323. 10.1016/j.indcrop.2012.05.029Search in Google Scholar

[66] Vuković G.D., Marinković A.D., Škapin S.D., Ristić M.T., Aleksić R., Perić-Grujić A.A., et al., Removal of lead from water by amino modified multi-walled carbon nanotubes, Chem. Eng. J., 2011, 173, 855-865. 10.1016/j.cej.2011.08.036Search in Google Scholar

[67] Wang L., Zhang J., Zhao R., Li Y., Li C.,Zhang C., Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies, Bioresour. Technol., 2010, 101, 5808-5814. 10.1016/j.biortech.2010.02.099Search in Google Scholar

[68] Xue Y., Gao B., Yao Y., Inyang M., Zhang M., Zimmerman A.R., et al., Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests, Chem. Eng. J., 2012, 200-202, 673-680. 10.1016/j.cej.2012.06.116Search in Google Scholar

[69] Zaini M.A.A., Okayama R.,Machida M., Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons, J. Hazard. Mater., 2009, 170, 1119-1124. 10.1016/j.jhazmat.2009.05.090Search in Google Scholar

[70] Zhu H., Jia Y., Wu X.,Wang H., Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 2009, 172, 1591-1596. 10.1016/j.jhazmat.2009.08.031Search in Google Scholar

[71] Zouboulis A.I., Kydros K.A.,Matis K.A., Flotation of powdered activated carbon with adsorbed gold(I)-thiourea complex, Hydrometallurgy, 1994, 36, 39-51. 10.1016/0304-386X(94)90040-XSearch in Google Scholar

Received: 2014-7-28
Accepted: 2014-9-19
Published Online: 2015-1-13

© 2015 Eleni A. Deliyanni et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.5.2023 from
Scroll to top button