Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 16, 2015

Armchair Boron Nitride nanotubes—heterocyclic molecules interactions: A computational description

Ernesto Chigo Anota, Gregorio Hernández Cocoletzi and Andres Manuel Garay Tapia
From the journal Open Chemistry


Ab-initio calculations using density functional theory (DFT) are used to investigate the non-covalent interactions between single wall armchair boron nitride nanotubes (BNNTs) with open ends and several heterocyclic molecules: thiophene (T; C4H4S), benzothiophene (BT; C8H6S) and dibenzothiophene (DBT; C12H8S). In the armchair model the nanotubes exhibit (n, n) chirality; here we consider n = 5. The exchange-correlation energies are treated according to the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA). A base function with double polarization is used. The geometry optimization of (5,5) BNNT-X; X = T, BT and DBT has been carried out using the minimum energy criterion in 5 different configurations of the molecules adsorbed on the nanotube. Our computer simulations have found that the preferential adsorption site of the molecule on the nanotube surface is the parallel configuration for BT and DBT, and at one nanotube end for the T fragment, with all cases having physical interactions. The polarity exhibits an increase which favors the possible dispersion, provided the electrons are polarized. The nanostructure functionalization increases the chemical reactivity which in turn enhances interactions between the molecule and the nanotube. The BNNT-dibenzothiophene work function reduction as compared with the pristine case yields the improvement of the field emission properties.

Graphical Abstract


[1] Rubio A., Corkill J. L., Cohen M., Theory of graphitic boron nitride nanotubes, Phys. Rev. B, 1994, 49, 5081-5084 10.1103/PhysRevB.49.5081Search in Google Scholar PubMed

[2] Chopra N. G., Luyken R. J., Cherrey K, Crespi V. H., Cohen M. L., Louie S. G., Zetl A., Boron Nitride Nanotubes, Science 1995, 269, 966-967 10.1126/science.269.5226.966Search in Google Scholar PubMed

[3] Golberg D., Bando Y., Unique morphologies of boron nitride nanotubes, Appl. Phys. Lett. 2001, 79, 415-417 10.1063/1.1385188Search in Google Scholar

[4] Huei Lee C., Zhang D., Khin Yap Y., Functionalization, Dispersion, and Cutting of Boron Nitride Nanotubes in Water, J. Phys. Chem. C 2012, 116, 1798- 1804 10.1021/jp2112999Search in Google Scholar

[5] Raffa V., Riggio C., Smith M. W., Jordan K. C., Cao W., Cuschieri A., BNNT-mediated irreversible electroporation: its potential on cancer cells, Technol. Cancer Res. Treat. 2012, 11, 459-465 10.7785/tcrt.2012.500258Search in Google Scholar PubMed

[6] Ciofani G., Raffa V., Menciassi A., Cuschieri A., Boron nitride nanotubes: an innovative tool for nanomedicine, Nano Today 2009, 4, 8-10 10.1016/j.nantod.2008.09.001Search in Google Scholar

[7] Wu J., Yin L., Platinum Nanoparticle Modified Polyaniline- Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor, ACS Appl. Mater. Interfaces 2011, 3, 4354-4362 10.1021/am201008nSearch in Google Scholar PubMed

[8] Gao Zh., Zhi Ch., Bando Y., Golberg D., Serizawa T., Noncovalent Functionalization of Disentangled Boron Nitride Nanotubes with Flavin Mononucleotides for Strong and Stable Visible-Light Emission in Aqueous Solution, ACS Appl. Mater. Interfaces 2011, 3, 627-632 10.1021/am1010699Search in Google Scholar PubMed

[9] Zhi C. Y., Bando Y., Tang C., Honda S., Sato K., Kuwahara H., Golberg D., Characteristics of Boron Nitride Nanotube– Polyaniline Composites, Angew. Chem. Int. Ed. 2005, 44, 7929- 7932 10.1002/anie.200502591Search in Google Scholar PubMed

[10] Xie S. Y., Wang W., Fernando K. A. S., Wang X., Lin Y., Sun Y. P., Solubilization of boron nitride nanotubes, Chem. Commun. 2005, 29, 3670-3672 10.1039/b505330gSearch in Google Scholar PubMed

[11] Rodríguez Juárez A., Chigo Anota E., Hernández Cocoletzi H., Flores Riveros A., Adsorption of chitosan on BN nanotubes: A DFT investigation Appl. Surf. Sci. 2013, 268, 259-264 10.1016/j.apsusc.2012.12.075Search in Google Scholar

[12] Saikia N., Pati S. K., Deka R. C., First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule, Appl. Nanosci. 2012, 2, 389-400 10.1007/s13204-012-0124-6Search in Google Scholar

[13] Chigo Anota E., Hernández Rodríguez L. D., Hernández Cocoletzi G., Influence of point defects on the adsorption of chitosan on Graphene-like BN nanosheets, Graphene 2013, 1 (2), 124-130 10.1166/graph.2013.1014Search in Google Scholar

[14] Chigo Anota E., Rodríguez Juárez A., Castro M., Hernández Cocoletzi H., A density functional theory analysis for the adsorption of the amine group on Graphene and Boron Nitride Nanosheets,J. Mol. Model. 2013, 19 (1), 321-328 10.1007/s00894-012-1539-4Search in Google Scholar PubMed

[15] McKee H. C., Herndon L. K., Withrow J. R., Estimation of Thiophene in Gasoline, Anal. Chem. 1948, 20 (4), 301-303 10.1021/ac60016a007Search in Google Scholar

[16] Moore R. J., Greensfelder B. S., The Catalytic Synthesis of Benzothiophene, J. Am. Chem. Soc. 1947, 69 (8), 2008-2009 10.1021/ja01200a053Search in Google Scholar

[17] Chigo Anota E., Hernández Cocoletzi G., GGA-based analysis of the metformin adsorption on BN Nanotubes, Physica E 2014, 56, 134-140 10.1016/j.physe.2013.08.033Search in Google Scholar

[18] Chigo Anota E., Hernández Cocoletzi H., Salazar Villanueva M., García Toral D., First-principles investigation of the interaction between BN, SiC and ZnO Nanotubes —BaTiO3, Superlatt. Microstruct. 2013, 63, 298-305 10.1016/j.spmi.2013.09.011Search in Google Scholar

[19] Chigo Anota E., Hernández Cocoletzi G., Sánchez Ramírez J. F., Armchair BN Nanotubes — Levothyroxine interactions: A Molecular Study, J. Mol. Model. 2013, 19, 4991-4996 10.1007/s00894-013-1999-1Search in Google Scholar PubMed

[20] Baumeier B., Krüger P., Pollmann J., Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes, Phys. Rev. B 2007, 76, 085407(1)-(10) 10.1103/PhysRevB.76.085407Search in Google Scholar

[21] Boese A. D., Handy N. C., A new parametrization of exchange– correlation generalized gradient approximation functionals, J. Chem. Phys. 2001, 114, 5497-5503 10.1063/1.1347371Search in Google Scholar

[22] Delley B., An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 1990, 92, 508-517 10.1063/1.458452Search in Google Scholar

[23] Delley B., From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113, 7756-7764 10.1063/1.1316015Search in Google Scholar

[24] Geerlings P., De Proft F., Langenaeker W., Conceptual Density Functional Theory, Chem. Rev. 2003, 103, 1793-1874 10.1021/cr990029pSearch in Google Scholar PubMed

[25] Chigo Anota E., Ramírez Gutiérrez R. E., Pérez Sanchéz F. L., Sanchéz Ramírez J. F., Structural Characteristics and Chemical Reactivity of Doped Graphene Nanosheets, Graphene 2013, 1 (1), 31-36 10.1166/graph.2013.1008Search in Google Scholar

[26] Foresman JB, Frisch Æ. Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., USA, 1996 Search in Google Scholar

[27] Hao S., Zhou G., Duan W., Wu J., Gu B. L., Tremendous spinsplitting effects in open boron nitride nanotubes: application to nanoscale spintronic devices, J. Am. Chem. Soc. 2006, 128, 8453(1)-(8) 10.1021/ja057420eSearch in Google Scholar PubMed

[28] Xiang H. J., Yang J., Hou J. G., Zhu Q., First-principles study of small-radius single-walled BN nanotubes, Phys. Rev. B 2003, 68, 035427(1)-(5) 10.1103/PhysRevB.68.035427Search in Google Scholar

[29] Gómez B., Martínez Magadán J. M., A theoretical study of dibenzothiophene absorbed on open-ended carbon nanotubes, J. Phys. Chem. B 2005, 109, 14868-14875 10.1021/jp050615oSearch in Google Scholar PubMed

[30] Li S. Semiconductor Physical Electronics, 2nd ed., Springer, USA, 2006 10.1007/0-387-37766-2Search in Google Scholar

[31] Matsunaga N., Molecular Conduction Characteristics from the Intrinsic Molecular Properties, J. Comp. Theor. Nanosci. 2006, 3, 1-7 10.1166/jctn.2006.3083Search in Google Scholar

[32] Yeon Lee S., Density Functional Theory Calculation of Molecular Structure and Vibrational Spectra of Dibenzothiophene in the Ground and the Lowest Triplet State, J. Phys. Chem A 2001, 105, 8093-8097 10.1021/jp010991iSearch in Google Scholar

[33] Schaffrin R., Trotter J., Structure of dibenzothiophene, J. Chem. Soc. A 1970, 1561-1565 10.1039/j19700001561Search in Google Scholar

[34] Radosavljevi M., Appenzeller J., Derycke V., Martel R., Avouris Ph., Loiseau A., Cochon J. L., Pigache D., Electrical properties and transport in boron nitride nanotubes, Appl. Phys. Lett. 2003, 82, 4131-4133 10.1063/1.1581370Search in Google Scholar

[35] Lauret J. S., Arenal R., Ducastelle F., Loiseau A., Cau M., Attal-Tretout B., Rosencher E., Goux-Capes L., Optical transitions in single-wall boron nitride nanotubes, Phys. Rev. Lett. 2005, 94, 37405(1)-(4) 10.1103/PhysRevLett.94.037405Search in Google Scholar PubMed

[36] Cumings J., Zettl A., Field emission and current-voltage properties of boron nitride nanotubes, Solid State Commun. 2004, 129, 661-664 10.1016/j.ssc.2003.11.026Search in Google Scholar

[37] Ishigami M., Sau J. D., Aloni S., Cohen M. L, Zettl A., Observation of the Giant Stark Effect in Boron-Nitride Nanotubes, Phys. Rev. Lett. 2005, 94, 56804(1)-(4) 10.1103/PhysRevLett.94.056804Search in Google Scholar PubMed

[38] Gaussian 09, Revision C.01, Frisch M. J., Trucks G. W, Schlegel H. B., Scuseria G. E., Robb M. A, Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K.,. Rendell A, Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V, Cioslowski J., Fox D. J., Gaussian, Inc., Wallingford CT, 2010 Search in Google Scholar

[39] O’Boyle N. M., Tenderholt A. L., Langner K. M., cclib: A library for package-independent computational chemistry algorithms, J. Comp. Chem. 2008, 29, 839-845 10.1002/jcc.20823Search in Google Scholar PubMed

Received: 2014-2-26
Accepted: 2014-10-5
Published Online: 2015-2-16

© 2015 E. Chigo Anota et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow