Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 1, 2015

Salix viminaliswood as a new precursor for manufacturing of carbon molecular sieves for effective methane/nitrogen separation

Olga Gorska, Aleksandra W. Cyganiuk, Andrzej Olejniczak, Anna Ilnicka and Jerzy P. Lukaszewicz
From the journal Open Chemistry


Separation of a methane/nitrogen gas mixture was investigated by means of carbon molecular sieves (CMS) obtained from a newly discovered “green” resource: Salix viminalis. This plant grows quickly, yields hard wood and is frequently cultivated for energy purposes (renewable green fuel). Unconventional applications such as charcoal fabrication using this sort of wood are very rare. Carbonization of the wood (1–3 h, 600–700°C) yields carbons with a very narrow pore size distribution (determined by N2 adsorption at -196°C) resembling a perfect CMS. The diameter of most pores (ca. 0.8 nm) is comparable to the size of simple molecules, thus enabling separation. The sieving effect was proven in an industrially important process of CH4/N2 separation at 30–70°C. Despite relatively minor differences of the size of the molecules, the experiment demonstrated that separation factors are placed in the range 3.64–10.20. Additional experiments involving krypton proved that the separation mechanism is based on a geometric factor i.e. the known size and shape of the molecules under separation.

Graphical Abstract


[1] Dillon A.C., Heben M.J., Hydrogen storage using carbon adsorbents: past, present and future, Appl. Phys. A: Mater. Sci & Process., 2001, 72, 133–142 Search in Google Scholar

[2] Hassan M.M., Ruthven D.M., Raghavan N.S., Air separation by pressure swing adsorption on a carbon molecular sieve, Chem. Eng. Sci., 1986, 41, 1333–1343 10.1016/0009-2509(86)87106-8Search in Google Scholar

[3] Rege S.U., Yang R.T., Kinetic separation of oxygen and argon using molecular sieve carbon, Adsorption, 2000, 6, 15-22 Search in Google Scholar

[4] Srinivasan R., Auvil S.R., Schork J.K., Mass transfer in carbon molecular sieves – an interpretation of Langmuir kinetics, The Chem. Eng. J., 1995, 57, 137–144 10.1016/0923-0467(94)02942-3Search in Google Scholar

[5] Sing K.S.W., Williams R.T., The use of molecular probes for the characterization of nanoporous adsorbents, Particle and Particle Sys. Character., 2004, 21, 71–79 10.1002/ppsc.200400923Search in Google Scholar

[6] Reid C.R., O’koye I.P., Thomas K.M., Spherical adsorptives as probes for kinetic selectivity, Langmuir, 1998, 14, 2415–2425 10.1021/la9709296Search in Google Scholar

[7] Reid C.R., Thomas K.M., Adsorption of gases on a carbon molecular sieve used for Air Separation: Linear Adsorptives as probes for kinetic selectivity, Langmuir, 1999, 15, 3206–3218 10.1021/la981289pSearch in Google Scholar

[8] Yoshioka T., Kanezashi M., Tsuru T., Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics, AICHE J., 2013, 59, 2179-2194 10.1002/aic.13966Search in Google Scholar

[9] Abedini R., Nezhadmoghadam A., Application of membrane in gas separation process. Its suitability and mechanism, Petroleum & Coal, 2010, 52, 69-80 Search in Google Scholar

[10] Step G.Kh., Petrovichev M.V., Pressure swing adsorption for air separation and purification, Chem. Petrol. Eng., 2002, 38, 154–158 10.1023/A:1019644220635Search in Google Scholar

[11] Manzoor Z., Air separation on carbon molecular sieves: 4A and 5A zeolites by pressure swing adsorption, PhD thesis, University of Petroleum and Minerals, Dhahran, Saudi Arabia, 1971 Search in Google Scholar

[12] Ackley M.W., Rege S.U., Saxena H., Application of natural zeolites in the purification and separation of gases, Micropor. Mesopor. Mater., 2003, 61, 25–42 10.1016/S1387-1811(03)00353-6Search in Google Scholar

[13] Shirley A.I., Lemcoff N.O., Air separation by carbon molecular sieves, Adsorption, 2001, 8, 147–155 10.1023/A:1020486502889Search in Google Scholar

[14] Wang Q., Challa S.R., Sholl D.S., Johnson J.K., Quantum sieving in carbon nanotubes and zeolites, Phys. Rev. Lett., 1999, 82, 956–960 10.1103/PhysRevLett.82.956Search in Google Scholar

[15] Manocha S.M., Porous carbons, Sadhana, 2003, 28, 335–348 10.1007/BF02717142Search in Google Scholar

[16] Hu Z., Vansan E.F., Carbon molecular sieves produced from walnut shell, Carbon, 1995, 33, 561–567 10.1016/0008-6223(94)00141-LSearch in Google Scholar

[17] Cyganiuk A., Klimkiewicz R., Olejniczak A., Lukaszewicz J.P., Biotechnological fabrication of LaMnO3-carbon catalyst for n-butanol conversion to ketones, Carbon, 2010, 48, 99–106 10.1016/j.carbon.2009.08.034Search in Google Scholar

[18] Pastor-Villegas J., Pastor-Valle J.F., Meneses Rodriguez J.M., Garcia M., Study of commercial wood charcoals for the preparation of carbon adsorbents, J. Anal. Appl. Pyrolys., 2006, 76, 103–108 10.1016/j.jaap.2005.08.002Search in Google Scholar

[19] Gorska O., Wybrane surowce naturalne jako potencjalne źródło do otrzymywania materiałów węglowych o właściwościach sitowo-molekularnych, MSc thesis, Nicholas Copernicus University, Torun, Poland, 2009, (in Polish) Search in Google Scholar

[20] Lukaszewicz J.P., Wesołowski R., Arcimowicz A.. Sposób wytwarzania adsorbentów węglowych, Patent application, P 384122, Poland, 2007 Search in Google Scholar

[21] Christersson L., Sennerby-Forsse L., The Swedish programme for intensive short rotation forests, Biomass. Bioenergy, 1994, 6, 145–149 10.1016/0961-9534(94)90094-9Search in Google Scholar

[22] Labrecque M., Teodorescu T.I., Daigle S., Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge, Biomass. Bioenergy, 1997, 12, 409–417 10.1016/S0961-9534(97)00011-1Search in Google Scholar

[23] Łukaszewicz J.P., Wesołowski R., Fabrication of molecular-sievetype carbons from Salix viminalis, Micropor. Mesopor. Mater., 2008, 111, 723–726 10.1016/j.micromeso.2008.04.034Search in Google Scholar

[24] Standard DIN 66134, Bestimmung der Porengrößenverteilung und der spezifischen Oberfläche mesoporöser Feststoffe durch Stickstoffsorption: Verfahren nach Barrett, Joyner und Halenda (BJH), DIN Deutsches Institut fuer Normung, Berlin, Germany, 1998 Search in Google Scholar

[25] Standard ISO 9277, Determination of the specific surface area of solids by gas adsorption using the BET method, International Organization for Standardization, Geneva, Switzerland, 1995 Search in Google Scholar

[26] Horvath G., Kawazoe K.J., Method for the calculation of effective pore size distribution molecular sieve carbon, J. Chem. Eng. Japan, 1983, 16, 470–475 10.1252/jcej.16.470Search in Google Scholar

[27] Nimmo J.R., Porosity and pore size distribution, In: Hillel D. (Ed.), Encyclopedia of soils in the environment, Elsevier, London, 2004 10.1016/B0-12-348530-4/00404-5Search in Google Scholar

[28] Furmaniak S., Terzyk A.P., Gauden P.A., Harris P.J.F., Kowalczyk P., Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for realistic carbon model, J. Phys.: Condens. Matter, 2009, 21, 315005–315015 10.1088/0953-8984/21/31/315005Search in Google Scholar PubMed

[29] Lozano-Castello D., Cazorla-Amoros D., Linares-Solano A., Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons, Carbon, 2004, 42, 1231–1236 10.1016/j.carbon.2004.01.037Search in Google Scholar

[30] Albornoz A., Labady M., Lopez M., Laine J., Evidence for the formation of slit mesopores in activated carbon, J. Mater. Sci. Lett., 1999, 18, 1999–2000 10.1023/A:1006638017436Search in Google Scholar

[31] Rao M.B., Jenkins R.G., Steele W.A., Potential functions for diffusive motion in carbon molecular sieves, Langmuir, 1985, 1, 137-141 10.1021/la00061a024Search in Google Scholar

[32] Cavenati S., Grande C.A., Rodrigues A.E., Separation of methane and nitrogen by adsorption on carbon molecular sieve, Sep. Sci. Technol., 2005, 40, 2721–2743 10.1080/01496390500287846Search in Google Scholar

[33] Farooq S., Qinglin H., Karimi I.A., Identification of transport mechanism in adsorbent micropores from column dynamics, Ind. Eng. Chem. Res., 2002, 41, 1098–1106 10.1021/ie0104621Search in Google Scholar

[34] Loughlin K.F., Hassan M.M., Fatehi A.I., Zahur M., Rate and equilibrium sorption parameters for nitrogen and methane on carbon molecular sieve, Gas Sep. Purif., 1993, 7, 264–273 10.1016/0950-4214(93)80028-USearch in Google Scholar

[35] Everett D.H., Thermodynamics of adsorption. Part I.—General considerations, Trans. Faraday. Soc., 1950, 46, 453–459 10.1039/TF9504600453Search in Google Scholar

Received: 2014-4-29
Accepted: 2014-11-7
Published Online: 2015-4-1

© 2015 Olga Gorska et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow