Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 22, 2015

Liquid chromatographic determination of glyphosate and aminomethylphosphonic acid residues in rapeseed with MS/MS detection or derivatization/fluorescence detection

Piotr Kaczyński and Bożena Łozowicka
From the journal Open Chemistry

Abstract

Glyphosate and AMPA determinations in rapeseed extracts by (a) liquid chromatography with triple quadrupole MS detection (LC-MS/MS), or (b) liquid chromatography with post-column OPA derivatization and fluorescence detection (LC-FLD) were developed. Mean recoveries for glyphosate and AMPA were (a) 88.8–95.0% and 82.1–86.1%, and (b) 70.8–74.1% and 62.4–72.6%. RSD were below (a) 11% and (b) 22%. Correlation coefficients were above 0.997 for both methods. LOD were 0.01 mg kg-1 for (a) and 0.05 mg kg-1 for (b). Both methods are simple and efficient for routine analysis of glyphosate and AMPA in a fatty matrix.

Graphical Abstract

References

[1] Franz J.E, Mao M.K., Sikorski J.A., Glyphosate: A unique global herbicide, Am. Chem. Soc., 1997, 189, 163-175 Search in Google Scholar

[2] Duke S.O., Powles S.B., Glyphosate: a once-in-a-century herbicide, Pest. Manag. Sci., 2008, 64, 319-325 10.1002/ps.1518Search in Google Scholar

[3] Tomlin C.D.S., The Pesticide Manual, Thirteenth ed., British Crop Protection Council, Hampshire, UK, 2003 Search in Google Scholar

[4] Tan S., Evans R., Singh B., Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops, Amino. Acids., 2006, 30, 195-204 10.1007/s00726-005-0254-1Search in Google Scholar

[5] Mitsis T., Efthimiadou A., Bilalis D.J., Danalatos N.G., Efthimiadis P., Konstantas A., Maximizing oilseed rape’s yield by glyphosate under Mediterranean conditions, Ind. Crop. Prod., 2011, 33, 544-548 10.1016/j.indcrop.2010.11.017Search in Google Scholar

[6] Glass R.L., Adsorption of glyphosate by soils and clay minerals, J. Agr. Food Chem., 1987, 35, 497-500 10.1021/jf00076a013Search in Google Scholar

[7] Borggaard O.K., Gimsing A.L., Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review, Pest. Manag. Sci., 2008, 64, 441-456 10.1002/ps.1512Search in Google Scholar

[8] Vreeken R.J., Speksnijder P., Bobeldijk-Pastorova I., Noij T.H.M., Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by online solid-phase extraction-high-performance liquid chromatography-electrospray ionization mass spectrometry, J. Chromatogr. A., 1998, 794, 187-199 10.1016/S0021-9673(97)01129-1Search in Google Scholar

[9] Williams G.M., Kroes R., Munro I.C., Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans, Regul. Toxicol. Pharm., 2000, 31, 117-165 10.1006/rtph.1999.1371Search in Google Scholar

[10] Cuhra M., Traavik T., Bohn T., Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna, Ecotoxicology, 2013, 22, 251-262 10.1007/s10646-012-1021-1Search in Google Scholar

[11] Tesfamariam T., Bott S., Cakmak I., Romheld V., NeumannG., Glyphosate in the rhizosphere – Role of waiting times and different glyphosate binding forms in soils for phytotoxicity to non-target plants, Eur. J. Agron. 2009, 31, 126-132 10.1016/j.eja.2009.03.007Search in Google Scholar

[12] Tomita M., Okuyama T., Nigo Y, Uno B., Kawai S., Determination of glyphosate and its metabolite, (aminomethyl) phosphonic acid, in serum using capillary electrophoresis, J. Chromatogr., 1991, 571, 324-330 10.1016/0378-4347(91)80463-MSearch in Google Scholar

[13] Thongprakaisang S., Thiantanawat A., Rangkadilok N., Suriyo T., Satayavivad J., Glyphosate induces human breast cancer cells growth via estrogen receptors, Food Chem. Toxicol., 2013, 59, 129-136 10.1016/j.fct.2013.05.057Search in Google Scholar PubMed

[14] Sandrini J.Z., Rola R.C., Lopes F.M., Buffon H.F., Freitas M.M., de Martinez Gaspar M.C., et al., Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies, Aquat. Toxicol., 2013, 130, 171-173 10.1016/j.aquatox.2013.01.006Search in Google Scholar PubMed

[15] Łozowicka B., Jankowska M., Rutkowska E., Kaczyński P., Comparison of two preparation procedures for determination of pesticides residues in oilseed rape by gas chromatography, Chem. Anal., 2009, 54, 367-387 Search in Google Scholar

[16] Garcia-Reyes J.F., Ferrer C., Gomez-Ramos M.J., Molina-Diaz A., Fernandez-Alba A.R., Determination of pesticide residues in olive oil and olives, Trends Anal. Chem., 2007, 26, 239-251 10.1016/j.trac.2007.01.004Search in Google Scholar

[17] Popp M., Hann S., Mentler A., Fuerhacker M., Stingeder G., Koellensperger G., Determination of glyphosate and AMPA in surface and waste water using high-performance ion chromatography coupled to inductively coupled plasma dynamic reaction cell mass spectrometry (HPIC-ICP-DRC-MS), Anal. Bioanal. Chem., 2008, 391, 695-699 10.1007/s00216-008-2037-5Search in Google Scholar PubMed

[18] Küsters M., Gerhartz M., Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin, J Sep. Sci., 2010, 33, 1139-1146 10.1002/jssc.200900556Search in Google Scholar PubMed

[19] de Llasera M.P., Gomez-Almaraz L., Vera-Avila L.E., Pena-Alvarez A., Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit, J. Chromatogr. A., 2005, 1093, 139-146 10.1016/j.chroma.2005.07.063Search in Google Scholar PubMed

[20] Marek L.J., Koskinen W.C., Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography-tandem mass spectrometry, Pest. Manag. Sci., 2014, 70, 1158-1164 10.1002/ps.3684Search in Google Scholar PubMed

[21] Botero-Coy A.M., Ibanez M., Sancho J.V., Hernandez F., Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry, J. Chromatogr. A., 2013, 1292, 132-141 10.1016/j.chroma.2012.12.007Search in Google Scholar PubMed

[22] Goscinny S., Unterluggauer H., Aldrian J., Hanot V., Masselter S., Determination of glyphosate and its metabolite AMPA (Aminomethylphosphonic Acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS, Food Anal. Methods., 2012, 5, 1177-1185 10.1007/s12161-011-9361-7Search in Google Scholar

[23] Qian K., Tang T., Shi T., Wang F., Li J., Cao Y., Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride, Anal. Chim. Acta., 2009, 635, 222-226 10.1016/j.aca.2009.01.022Search in Google Scholar PubMed

[24] Martins-Junior H.A., Lebre D.T., Wang A.Y., Pires M.A.F., Bustillos O.V., An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry, Rapid. Commun. Mass. Sp., 2009, 23, 1029-1034 10.1002/rcm.3960Search in Google Scholar

[25] Li X., Xu J., Jiang Y., Chen L., Xu Y., Pan C., Hydrophilic-interaction liquid chromatography (HILIC) with DAD and mass spectroscopic detection for direct analysis of glyphosate and glufosinate residues and for product quality control, Acta. Chromatogr., 2009, 21, 559-576 10.1556/AChrom.21.2009.4.4Search in Google Scholar

[26] Duran Meras I., Galeano Diaz T., Alexandre Franco M., Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water previous derivatization with NBD-Cl and by parcial least sqares calibration (PLS), Talanta, 2005, 65, 7-14 10.1016/j.talanta.2004.03.008Search in Google Scholar

[27] Freuze I., Jadas-Hecart A., Royer P.Y., Communal, Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water, J. Chromatogr. A., 2007, 1175, 197-206 10.1016/j.chroma.2007.10.092Search in Google Scholar

[28] Chang S.Y., Liao C.H., Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection, J. Chromatogr. A., 2002, 959, 309-315 10.1016/S0021-9673(02)00453-3Search in Google Scholar

[29] Goodwin L., Startin J.R., Keely B.J., Goodall D.M., Analysis of glyphosate and glufosinate by capillary electrophoresis–mass spectrometry utilising a sheathless microelectrospray interface, J. Chromatogr. A., 2003, 1004, 107-119 10.1016/S0021-9673(03)00572-7Search in Google Scholar

[30] Zhu Y., Zhang F., Tong C., Liu W., Determination of glyphosate by ion chromatography, J. Chromatogr. A., 1999, 850, 297-301 10.1016/S0021-9673(99)00558-0Search in Google Scholar

[31] Patsias J., Papadopoulou A., Papadopoulou-Mourkidou E., Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization, J. Chromatogr. A., 2001, 932, 83-90 10.1016/S0021-9673(01)01253-5Search in Google Scholar

[32] Hudzin Z.H., Gralak D.K., Drabowicz J., Luczak J., Novel approach for the simultaneous analysis of glyphosate and its metabolites, J. Chromatogr. A., 2002, 947, 129-141 10.1016/S0021-9673(01)01603-XSearch in Google Scholar

[33] Börjesson E., Torstensson L., New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil, J. Chromatogr. A., 2000, 886, 207-216 10.1016/S0021-9673(00)00514-8Search in Google Scholar

[34] Gonzalez-Martinez M.A., Brun E.M., Puchades R., Maquieira A., Ramsey K., Rubio F., Glyphosate immunosensor. Application for water and soil analysis, Anal. Chem., 2005, 77, 4219-4227 10.1021/ac048431dSearch in Google Scholar

[35] Lee E.A., Zimmerman L.R., Bhullar B.S., Thurman E.M., Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate, Anal. Chem., 2002, 74, 4937-4943 10.1021/ac020208ySearch in Google Scholar

[36] Deen T.S.A., Hibbert D.B, Hook J.M., Wells R.J., Quantitative nuclear magnetic resonance spectrometry - II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by1H and31P QNMR spectrometry, Anal. Chim. Acta., 2002, 474, 125-135 10.1016/S0003-2670(02)01017-6Search in Google Scholar

[37] Sato M., Yamashita A., Kikuchi M., Ito T., Honda M., Simultaneous analysis of phosphorus-containing amino acid type herbicides and their metabolites in human samples using N-acetyl,O-methyl derivatives by LC/MS, Jpn. J. Forensic Sci. Technol., 2009, 14, 35-43 10.3408/jafst.14.35Search in Google Scholar

[38] Hori Y., Fujisawa M., Shimada K., Sato M., Kikuchi M., Honda M., et al., Quantitative determination of glufosinate in biological samples by liquid chromatography with ultraviolet detection after p-nitrobenzoyl derivatization, J. Chromatogr. B., 2002, 767, 255-262 10.1016/S0378-4347(01)00553-9Search in Google Scholar

[39] Khrolenko M.V., Wieczorek P.P., Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride, J. Chromatogr. A., 2005, 1093, 111-117 10.1016/j.chroma.2005.07.062Search in Google Scholar

[40] Sancho J.V., Hidalgo C., Hernandez F., Lopez F.J., Hogendoorn E.A., Dijkman E., Rapid determination of glyphosate residues and its main metabolite ampa in soil samples by liquid chromatography, Int. J. Environ. An. Ch., 1996, 62, 53-63 10.1080/03067319608027052Search in Google Scholar

[41] Nedelkoska T.V., Low G.K.C., High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate, Anal. Chim. Acta., 2004, 511, 145-153 10.1016/j.aca.2004.01.027Search in Google Scholar

[42] Hori Y., Fujisawa M., Shimada K., Sato M., Honda M., Hirose Y., Enantioselective analysis of glufosinate using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography, J. Chromatogr. B., 2002, 776, 191-198 10.1016/S1570-0232(02)00351-3Search in Google Scholar

[43] Motojyuku M., Saito T., Akieda K., Otsuka H., Yamamoto I., Inokuchi S., Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography-mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 2008, 875, 509-514 10.1016/j.jchromb.2008.10.003Search in Google Scholar PubMed

[44] Hanke I., Singer H., Hollender J., Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection, Anal. Bioanal. Chem., 2008, 391, 2265-2276 10.1007/s00216-008-2134-5Search in Google Scholar

[45] Ibanez M., Pozo O.J., Sancho J.V., Lopez F.J., Hernandez F., Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. A., 2005, 1081, 145-155 10.1016/j.chroma.2005.05.041Search in Google Scholar

[46] Ibanez M., Pozo O.J., Sancho J.V., Lopez F.J., Hernandez F., Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. A., 2006, 1134, 51-55 10.1016/j.chroma.2006.07.093Search in Google Scholar

[47] Bernal J., Martin M.T., Soto M.E., Nozal M.J., Marotti I., Dinelli G., et al., Determination of glyphosate and (aminomethyl)phosphonic acid in soil, plant and animal matrixes, and water by capillary gas chromatography with mass-selective detection, Agr. Food Chem., 2012, 60, 4017-4025 Search in Google Scholar

[48] Botero-Coy A.M., Ibanez M., Sancho J.V., Hernandez F., Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry, J. Chromatogr. A., 2013, 1292, 132-141 10.1016/j.chroma.2012.12.007Search in Google Scholar

[49] Yoshioka N., Asano M., Kuse A., Mitsuhashia T., Nagasakic Y., Uenob Y., Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography, J. Chromatogr. A., 2011, 1218, 3675-3680 10.1016/j.chroma.2011.04.021Search in Google Scholar

[50] SANCO, Method validation and quality control procedures for pesticide residues analysis in food and feed. Document no. SANCO/12495/2011, (http://ec.europa.eu/food/plant/protection/recources/qualcontrol_en.pdf (2012) Search in Google Scholar

[51] Pongraveevongsa P., Khobjai W., Wunnapuk K., P. Sribanditmongkol P., High-performance liquid chromatography/uv detection for determination of glyphosate in serum and gastric content, Chiang Mai Med. J., 2008, 47, 149-199 Search in Google Scholar

[52] Piriyapittaya M., Jayanta S., Mitra S., Leepipatpiboon N., Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector, J. Chromatogr. A., 2008, 1189, 483-492 10.1016/j.chroma.2008.01.074Search in Google Scholar

[53] Coutinho C.F.B., Coutinho L.F.M., Mazo L.H., Nixdorf S.L., Camara C.A.P., Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection, J. Chromatogr. A., 2008, 1208, 246-249 10.1016/j.chroma.2008.09.009Search in Google Scholar

[54] Abdullah M.P., Daud J., Hong K.S., Yew C.H., Improved method for the determination of glyphosate in water, J. Chromatogr. A., 1995, 697, 363-369 10.1016/0021-9673(94)01161-7Search in Google Scholar

[55] Chen M.X., Cao Z.Y., Jiang Y., Zhu Z.W., Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry, J. Chromatogr. A., 2013, 1272, 90-99 10.1016/j.chroma.2012.11.069Search in Google Scholar PubMed

[56] Sun Y., Wang C., Wen Q., Wang G., Wang H., Qu Q., et al., Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride, Chromatographia, 2010, 72, 679-686 10.1365/s10337-010-1705-8Search in Google Scholar

[57] Sanchis J., Kantiani L., Llorca M., Rubio F., Ginebreda A., Fraile J., et al., Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solidphase extraction followed by liquid chromatography coupled to tandem mass spectrometry, Anal. Bioanal. Chem., 2012, 402, 2335-2345 10.1007/s00216-011-5541-ySearch in Google Scholar

[58] Sanchez-Bayo F., Hyne R.V., Desseille K.L., An amperometric method for the detection of amitrole, glyphosate and its aminomethylphosphonic acid metabolite in environmental waters using passive samplers, Anal. Chim. Acta., 2010, 675, 125-131 10.1016/j.aca.2010.07.013Search in Google Scholar

[59] Hao C., Morse D., Morra F., Zhao X., Yang P., Nunn B., Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandemmass spectrometry using reversed-phase and weak anion-exchange mixed-mode column, J. Chromatogr. A., 2011, 1218, 5638-5643 10.1016/j.chroma.2011.06.070Search in Google Scholar

[60] Li B., Deng X., Guo D., Jin S., Determination of glyphosate and aminomethylphosphonic acid residues in foods using high performance liquid chromatography-mass spectrometry/mass spectrometry, Chinese J. Chromatogr., 2007, 25, 486-490 10.1016/S1872-2059(07)60017-0Search in Google Scholar

[61] Ferrer C., Lozano A., Aguera A., Giron A.J., Fernandez-Alba A.R., Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables, J. Chromatogr. A., 2011, 1218, 7634-769 10.1016/j.chroma.2011.07.033Search in Google Scholar PubMed

Received: 2014-12-8
Accepted: 2015-4-1
Published Online: 2015-6-22

© 2015 Piotr Kaczyński, Bożena Łozowicka

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/chem-2015-0107/html
Scroll Up Arrow