Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 4, 2015

Production of phosphate biofertilizers from bones by phosphate-solubilizing bacteria Bacillus megaterium

Małgorzata Wyciszkiewicz , Agnieszka Saeid , Katarzyna Chojnacka and Henryk Górecki
From the journal Open Chemistry


In this paper, the production of phosphate biofertilizers from bones by phosphate-solubilizing bacteria Bacillus megaterium is presented. The biofertilizers used in this study contain phosphorus compounds that are in available form to plants as well as components of growth medium. The solubilization was performed under two conditions; with chlorides and with sulphates instead of chlorides. Three biofertilizer forms are proposed in relation to the doses of bones applied in the solubilization process (4, 10 or 20 g L-1). The solubilization degree varied according to the bacterial medium formulation and the bones doses. The replacement of chlorides with sulphates yielded a lower growth rate, and resulted, in a lower solubilization. The specific growth rate of the cells of B. megaterium in a sulphate medium was lower than compared with the specific growth rate of cell culture in a medium of chlorides of about 22.4, 39 and 14%, for 4, 10 and 20 g L-1 of bones concentration, respectively. In the stationary phase, the solubilization factor (SF) was higher (61.7%) for the solubilization process conducted in a medium with chlorides − Cbone 4 g L-1, compared with the solubilization process conducted in the medium of sulphates (52.7%).

Graphical Abstract


[1] Tóth G., Guicharnaud R.A., Tóth B., Hermann T., Phosphorus levels in croplands of the European Union with implications for P fertilizer use, Eur. J. Agron., 2014, 55, 42–52 10.1016/j.eja.2013.12.008Search in Google Scholar

[2] Vassilev N., Medina A., Mendes G., Galvez A., Martos V., Vassileva M., Solubilization of animal bonechar by a filamentous fungus employed in solid state fermentation, Ecol. Eng., 2013, 58, 165–169 10.1016/j.ecoleng.2013.06.029Search in Google Scholar

[3] Xiao C.-Q., Chi R.-A., Huang X.-H., Zhang W.-X.,Qiu G.-Z., WangD.-Z., Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines, Ecol.Eng., 2008, 33, 187–193 10.1016/j.ecoleng.2008.04.001Search in Google Scholar

[4] Labuda M., Saeid A., Chojnacka K., Górecki H., Zastosowanie Bacillus megaterium w solubilizacji fosforu, Przem.Chem.,2012, 91, 837−840 Search in Google Scholar

[5] Rodríguez H, Fraga R., Phosphate solubilizing bacteria and their role in plant growth promotion,Biotechnol. Adv., 1999, 17, 319−39 10.1016/S0734-9750(99)00014-2Search in Google Scholar

[6] Alfa M.I., Adie D.B., Igboro S.B., Oranusi U.S., Dahunsi S.O., Akali D.M., Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings, Renew. Energ., 2014, 63, 681–686 10.1016/j.renene.2013.09.049Search in Google Scholar

[7] Valdés J., Pedroso I., Quatrini R., Dodson R.J., Tettelin H., Blake R., et al., Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications, BMC Genomics, 2008, 9, 597 10.1186/1471-2164-9-597Search in Google Scholar PubMed PubMed Central

[8] Korneli C., David F., Biedendieck R., Jahn D., Wittmann Ch., Getting the big beast to work—Systems biotechnology of Bacillus megaterium for novel high-value proteins, J. Biotechnol., 2013, 163, 2, 87−96 10.1016/j.jbiotec.2012.06.018Search in Google Scholar PubMed

[9] Mishra R.R., Prajapati S., Das J., Dangar T.K., Das N., Thatoi H., Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product, Chemosphere, 2011, 84, 1231−1237 10.1016/j.chemosphere.2011.05.025Search in Google Scholar PubMed

[10] Hu X., Roberts D.P, Xie L., Maul J.E., Yu Ch., Li Y. et. al.,Bacillus megateriumA6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth, Crop Prot., 2013, 52, 151−158 10.1016/j.cropro.2013.05.018Search in Google Scholar

[11] Rajkumar M., Ma Y., Freitas H., Improvement of Ni phytostabilization by inoculation of Ni resistantBacillus megateriumSR28C,J. Environ. Manage., 2013, 128, 973−98 10.1016/j.jenvman.2013.07.001Search in Google Scholar PubMed

[12] Kildea S., Ransbotyn V., Khan M.R., Fagan B., Leonard G., Mullins E., et al., Bacillus megateriumshows potential for the biocontrol of septoriatritici blotch of wheat, Biol. Control, 2008, 47, 37−45 10.1016/j.biocontrol.2008.07.001Search in Google Scholar

[13] Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies (OJ L 147, 31.5.2001, p. 1) Search in Google Scholar

[14] Saeid A., Labuda M., Chojnacka K., Górecki H., Valorization of Bones to Liquid Phosphorus Fertilizer by Microbial Solubilization, Waste Biomass Valor., 2014, 5, 265–272 10.1007/s12649-013-9238-7Search in Google Scholar

[15] Saeid A., Labuda M., Jastrzębska M., Chojnacka K., Górecki H., The concept of production of new generation of phosphorus biofertilizer - BioFertP project, Przem. Chem. (in press, in polish) Search in Google Scholar

[16] Maas E.V., Physiological responses to chloride. In Jackson T.L. (ed.) Special Bulletin on Chloride and Crop Production, Potash & Phosphate Institute, Atlanta, GA, 1986 Search in Google Scholar

[17] Gunduz S., Akman S., Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry, Food Chem., 2015, 172, 213–218. 10.1016/j.foodchem.2014.09.031Search in Google Scholar

[18] Zhao Q., Wu1 Y., Gao L., Ma J., LiCh-Y.Xian Ch.-B., Sulfur nutrient availability regulates root elongation by affecting root indole‐3‐acetic acid levels and the stem cell niche, J. Integr. Plant Biol.,2014, 56, 1151–1163. 10.1111/jipb.12217Search in Google Scholar

[19] Blum S.Ch., Lehmann J., Solomon D., Caires E.F, Alleoni L.R.F., Sulfur forms in organic substrates affecting S mineralization in soil, Geoderma, 2013, 200–201, 156–164 10.1016/j.geoderma.2013.02.003Search in Google Scholar

[20] Miransari M., Soil microbes and the availability of soil nutrients, Acta Physiol. Plant, 2013, 35, 3075–3084 10.1007/s11738-013-1338-2Search in Google Scholar

[21] López A. C., Alippi A. M., Diversity of Bacillus megaterium isolates cultured from honeys, LWT - Food Sci. Technol., 2009, 42, 212−219 10.1016/j.lwt.2008.05.001Search in Google Scholar

[22] Kulpreecha S., Boonruangthavorn A., Meksiriporn B., Thongchul N., Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium, J. Biosci. Bioeng., 2009, 107, 240−245 10.1016/j.jbiosc.2008.10.006Search in Google Scholar

[23] Illanes A., Acevedo F., Gentina J.C., Reyes I., Torres R., Cartagena O., et al., Production of penicillin acylase from Bacillus megaterium in complex and defined media, Process Biochem., 1994, 29, 263−270 10.1016/0032-9592(94)80067-7Search in Google Scholar

[24] Kafkafi U., Xu G., Chlorine. In Lal, R. (ed.)Encyclopedia of Soil Science pp. 222-226, Taylor & Francis Group, LLC, 2006 Search in Google Scholar

[25] Heckman J.R., Chlorine. In BarkerA.V., PilbeamD.J. (eds.) Handbook of Plant Nutrition pp. 281-291, Taylor & Francis Group, LLC,2006 10.1201/9781420014877.ch9Search in Google Scholar

Received: 2015-1-31
Accepted: 2015-6-12
Published Online: 2015-8-4

© 2015 Małgorzata Wyciszkiewicz et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2022 from
Scroll Up Arrow