Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 7, 2015

2-Amino-4-arylthiazole Derivatives as Anti-giardial Agents: Synthesis, Biological Evaluation and QSAR Studies

Raul Mocelo-Castell , Carlos Villanueva-Novelo , David Cáceres-Castillo , Ruben M. Carballo , Ramiro F. Quijano-Quiñones , Mariana Quesadas-Rojas , Zulema Cantillo-Ciau , Roberto Cedillo-Rivera , Rosa E. Moo-Puc , Laila M. Moujir and Gonzalo J. Mena-Rejón
From the journal Open Chemistry

Abstract

A series of seven 2-amino-4-arylthiazoles were prepared following Hantzsch’s modified method under microwave irradiation. A set of 50 derivatives was obtained and the in vitro activity against Giardia intestinalis was evaluated. The results on the biological activity revealed that, in general, the N-(5-bromo-4-aryl-thiazol-2-yl)-acetamide scaffold showed high bioactivity. In particular, compounds 6e (IC50 = 0.39 μM) and 6b (IC50 = 0.87 μM) were found to be more potent than the positive control metronidazole. Citoxicity and acute toxicity tests performed showed low toxicity and high selectivity of the most active compounds (6e SI = 139, 6b SI = 52.3). A QSAR analysis was applied to a data set of 37 obtained 2-amino-4-arylthiazoles derivatives and the best model described a strongly correlation between the anti-giardiasic activity and molecular descriptors as E2M, RDF115m, F10, MATS6v, and Hypnotic-80, with high statistical quality. This finding indicates that N-substituted aminothiazole scaffold should be investigated for the development of highly selective anti-giardial agent.

Graphical Abstract

References

[1] Cotton J.A., Beatty J.K., Buret A.G., Host parasite interactions and pathophysiology in Giardia infections, Int. J. Parasitol., 2011, 41, 925-933. 10.1016/j.ijpara.2011.05.002Search in Google Scholar PubMed

[2] (a) Escobedo A.A., Almirall P., Robertson L.J., Franco R.M.B., Hanevik K., Mørch K., Cimerman S. Giardiasis: the ever-present threat of a neglected disease, Infect. Disord.-Drug Targets., 2010, 10, 329-348. (b) Roxström-Lindquist, K., Palm, D., Reiner, D., Ringqvist, E., Svärd, S.G., Giardia immunity - an update, Trends Parasitol., 2006, 22, 26-31. 10.2174/187152610793180821Search in Google Scholar PubMed

[3] Savioli L., Smith H., Thompson A., Giardia and Cryptosporidium join the ’Neglected Diseases Initiative’, Trends. Parasitol., 2006, 22, 203-208. 10.1016/j.pt.2006.02.015Search in Google Scholar PubMed

[4] Pasupuleti V., Escobedo A.A., Deshpande A., Thota P., Roman Y., Hernandez A.V., Efficacy of 5-Nitroimidazoles for the Treatment of Giardiasis: A Systematic Review of Randomized Controlled Trials, PLoS Negl. Trop. Dis., 2014, http://journals.plos.org/ plosntds /article?id=10.1371 /journal.pntd.0002733. 10.1371/journal.pntd.0002733Search in Google Scholar PubMed PubMed Central

[5] Löfmark S., Edlund C., Nord C.E., Metronidazole Is Still the Drug of Choice for Treatment of Anaerobic Infections, Clin. Infect. Dis., 2010, 50, S16-S23. 10.1086/647939Search in Google Scholar PubMed

[6] (a) Ortega Y., Adam R., Giardia: Overview and update, Clin. Infect. Dis, 1997, 25, 545-549. (b) Müller J., Rühle G., Müller N., Rossignol J.-F., Hemphill A., In vitro effects of thiazolides on Giardia lamblia WB clone C6 cultured axenically and in coculture with Caco2 cells, Antimicrob. Agents Chemother., 2006, 50, 162-170. (c) Singh S., Bharti N., Mohapatra P.P., Chemistry and Biology of Synthetic and Naturally Occurring Antiamoebic Agents, Chem. Rev., 2009, 109, 1900-1947. 10.1128/AAC.50.1.162-170.2006Search in Google Scholar PubMed PubMed Central

[7] (a) Purohit, V., Basu, A.K., Mutagenicity of nitroaromatic compounds, Chem. Res. Toxicol., 2000, 13, 673-692. (b) Lopez-Nigro M.M., Palermo A.M., Mudry M.D., Carballo M.A., Cytogenetic evaluation of two nitroimidazole derivatives, Toxicol. In Vitro, 2003, 17, 35-40. (c) El-Nahas F.A., El-Ashmawy I.M., Reproductive and cytogenetic toxicity of metronidazole in male mice, Basic Clin. Pharmacol.Toxicol., 2004, 94, 226-231. 10.1111/j.1742-7843.2004.pto940505.xSearch in Google Scholar PubMed

[8] Mineno T., Avery M.A., Giardiasis: Recent progress in chemotherapy and drug development, Curr. Pharm. Des., 2003, 9, 841-855. 10.2174/1381612033455260Search in Google Scholar PubMed

[9] Upcroft P., Upcroft J.A., Drug targets and mechanisms of resistance in anaerobic protozoa. Clin. Microbiol. Rev., 2001, 14, 150-164. 10.1128/CMR.14.1.150-164.2001Search in Google Scholar PubMed PubMed Central

[10] Tejman-Yarden N., Miyamoto Y., Leitsch D., Santini J., Debnath A., Gut J., et al., A Reprofiled Drug, Auranofin, Is Effective against Metronidazole-Resistant Giardia lamblia, Antimicrob. Agents Chemother., 2013, 57, 2029-2035. 10.1128/AAC.01675-12Search in Google Scholar PubMed PubMed Central

[11] Fox L.M., Saravolatz L.D., Nitazoxanide: A new thiazolide antiparasitic agent, Clin. Infect. Dis., 2005, 40, 1173-1180. 10.1086/428839Search in Google Scholar PubMed

[12] Rossigno J.F., Lopez-Chegne N., Julcamoro L.M., Carrion M.E., Bardin M.C., Nitazoxanide for the empiric treatment of pediatric infectious diarrhea, Trans. R. Soc. Trop. Med. Hyg., 2012, 106, 167-173. 10.1016/j.trstmh.2011.11.007Search in Google Scholar PubMed

[13] Eckmann L., Watkins R., Treatment of Giardiasis: Current Status and Future Directions, Curr. Infect. Dis. Rep., 2014, 16, 396-403. 10.1007/s11908-014-0396-ySearch in Google Scholar PubMed

[14] For recent papers on antimicrobial activity, see: (a) Annadurai S., Martinez R., Canney D.J., Eidem T., Dunman P.M., Abou-Gharbia M., Design and synthesis of 2-aminothiazole based antimicrobials targeting MRSA, Bioorg. Med. Chem. Lett., 2012, 22, 7719-7725. (b) Roy K.K., Singh S., Sharma S.K., Srivastava R., Chaturvedi V., Saxena A.K., Synthesis and biological evaluation of substituted 4-arylthiazol-2-amino derivatives as potent growth inhibitors of replicating Mycobacterium tuberculosis H37RV, Bioorg. Med. Chem. Lett., 2011, 21, 5589-5593. (c) Liaras K., Geronikaki A., Glamočlija J., Cirić A., Soković M., Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation, Bioorg. Med. Chem. Lett., 2011, 19, 3135-3150. (d) Alam M.S., Liu L., Lee Y.-E., Lee D.-U, Synthesis, Antibacterial Activity and Quantum-Chemical Studies of Novel 2-Arylidenehydrazinyl-4-arylthiazole Analogues, Chem. Pharm. Bull., 2011, 5, 568-573. For antifungal activity, see: (e) Yu H., Shao L., Fang J.J., Synthesis and biological activity research of novel ferrocenyl-containing thiazole imine derivatives, J. Organomet. Chem., 2007, 692, 991-996. (f) Shao L, Zhou X, Zhang Q., Liu J.B., Jin Z., Fang J.X., Synthesis, structure, and biological activity of novel 1H-1,2,4-Triazol-1-yl-thiazole derivatives, Synth. Commun., 2007, 37, 199-207. For antiviral activity, see: (g) Stachulski A.V., Pidathala C., Row E.C., Sharma R., Berry N.G., Iqbal M., et al. Thiazolides as Novel Antiviral Agents. 1. Inhibition of Hepatitis B Virus Replication, J. Med. Chem., 2011, 54, 4119-4132. (h) Liu Y., Zhang L., Gong J., Fang H., Liu A., Du G., et al., Design, synthesis, and biological activity of thiazole derivatives as novel influenza neuraminidase inhibitors, J. Enz. Inhib. Med. Chem., 2011, 26, 506-513. Search in Google Scholar

[15] (a) Berg M., Van der Veken P., Joossens J., Muthusamy V., Breugelmans M., Moss C. X., et al., Design and evaluation of Trypanosoma brucei metacaspase inhibitors, Bioorg. Med. Chem. Lett., 2010, 20, 2001-2006. (b) Maya J. D., Morello A., Repetto Y., Rodríguez A.,Puebla P., Caballero E., et al., Trypanosoma cruzi: Inhibition of parasite growth and respiration by oxazolo(thiazolo)pyridine derivatives and its relationship to redox potential and lipophilicity, Exp. Parasitol., 2001, 99, 1-6. (c) Branowska D., Farahat A.A., Kumar A., Wenzler T., Brun R., Liu Y., et al., Synthesis and antiprotozoal activity of 2,5-bis[amidinoaryl]thiazoles, Bioorg. Med. Chem. Lett., 2010, 18, 3551-3558. Search in Google Scholar

[16] (a) Walker R.G., Thomson G., Malone K., Nowicki M.W., Brown E., Blake D., et al., High Throughput Screens Yield Small Molecule Inhibitors of Leishmania CRK3:CYC6 Cyclin-Dependent Kinase, PLoS Negl. Trop. Dis., 2011, http://journals.plos.org/plosntds/ article?id=10.1371/journal.pntd.0001033. (b) Delmas, F., Avellaneda, A., Di Giorgio, C., Robin, M., De Clercq, E., Timon-David, P., et al., Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives, Eur. J. Med. Chem., 2004, 39, 685-690. Search in Google Scholar

[17] Karade H.N., Acharya B.N., Sathe M., Kaushik M.P., Design, synthesis, and antimalarial evaluation of thiazole-derived amino acids, Med. Chem. Res., 2008, 17, 19-29. 10.1007/s00044-008-9089-0Search in Google Scholar

[18] (a) Hencken C.P., Jones-Brando L., Bordón C., Stohler R., Mott B. T., Yolken R., et al., Thiazole, Oxadiazole, and Carboxamide Derivatives of Artemisinin are Highly Selective and Potent Inhibitors of Toxoplasma gondii, J. Med. Chem., 2010, 53, 3594-3601. (b) Tapia R.A., Alegria L., Pessoa C.D., Salas C., Cortés M.J., Valderrama J.A., et al., Synthesis and antiprotozoal activity of naphthofuranquinones and naphthothiophenequinones containing a fused thiazole ring, Bioorg. Med. Chem. Lett., 2003, 11, 2175-2182. 10.1021/jm901857dSearch in Google Scholar PubMed PubMed Central

[19] (a) Stadelmann B., Scholl S., Müller J., Hemphill A.J., Application of an in vitro drug screening assay based on the release of phosphoglucose isomerase to determine the structure-activity relationship of thiazolides against Echinococcus multilocularis metacestodes J. Antimicrob. Chemother., 2010, 65, 512-519. (b) Esposito M., Moores S., Naguleswaran A., Mu J., Hemphill A., Induction of tachyzoite egress from cells infected with the protozoan Neospora caninum by nitro- and bromo-thiazolides, a class of broad-spectrum anti-parasitic drugs, Int. J. Parasitol. 37, 1143 (2007). Search in Google Scholar

[20] Morales-Bonilla P., Perez-Cardeña A., Quintero-Marmol E., Arias-Tellez J.L., Mena-Rejon G.J., Preparation, antimicrobial activity and toxicity of 2-amino-4-arylthiazole derivatives, Heteroatom Chem., 2006, 17, 254-260. 10.1002/hc.20182Search in Google Scholar

[21] Wavefunction, Inc. Irvine, CA. Spartan’06. Search in Google Scholar

[22] Gaussian 09, Revision A.1, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R., et al., Gaussian, Inc., Wallingford CT, 2009. Search in Google Scholar

[23] Tomasi J., Mennucci B., Cammi R.,Quantum mechanical continuum solvation models, Chem. Rev., 2005, 105, 2999-3093. 10.1021/cr9904009Search in Google Scholar PubMed

[24] Lee C., Yang W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B., 1996, 37, 785. 10.1103/PhysRevB.37.785Search in Google Scholar

[25] Livingstone D., Analysis for chemists, Oxford University Press, UK, 1995. Search in Google Scholar

[26] (a) Ward Jr J.H., Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 1963, 58, 236-244. (b) Dearden J.C., Cronin M.T.D., Kaiser K.L.E., How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR), SAR and QSAR Environ. Res., 2009, 20, 241-266. 10.1080/10629360902949567Search in Google Scholar PubMed

[27] Systat for Windows, versión 12.02.00; Systat software, Inc.: 2007. Search in Google Scholar

[28] (a) Golbraikh A., Shen M., Xiao Z., Xiao Y.D., Lee K.H., Tropsha A., Rational selection of training and test sets for the development of validated QSAR models, J. Comput. Aided Mol. Des., 2003, 17, 241-253. (b) Hawkins D.M., Basak S.C., Mills D., Assessing model fit by cross-validation, J. Chem. Inf. Comput. Sci., 2003, 43, 579-586. 10.1021/ci025626iSearch in Google Scholar PubMed

[29] Cáceres-Castillo D., Carballo R.M., Tzec-Interián J.A., Mena-Rejón G., Solvent-free synthesis of 2-amino-4-arylthiazoles under microwave irradiation, Tetrahedron Lett., 2012, 53, 3934-3936. 10.1016/j.tetlet.2012.05.093Search in Google Scholar

[30] Mena-Rejón G.J., Pérez-Espadas A.R., Moo-Puc R. E., Cedillo-Rivera R., Bazzocchi I.L., Jiménez-Diaz I.A., et al., Antigiardial Activity of Triterpenoids from Root Bark of Hippocratea excelsa, J. Nat. Prod., 2007, 70, 863-865. 10.1021/np060559ySearch in Google Scholar PubMed

[31] Müller J., Wastling J., Sanderson S., Müller N., Hemphill A., A novel Giardia lamblia nitroreductase, GlNR1, interacts with nitazoxanide and other thiazolides, Antimicrob. Agents Chemother., 2007, 51, 1979-1986. 10.1128/AAC.01548-06Search in Google Scholar PubMed PubMed Central

[32] (a) Esposito M., Stettler R., Moores S.L., Pidathala C., Müller N., Stachulski A., et al., In vitro efficacies of nitazoxanide and other thiazolides against Neospora caninum tachyzoites reveal antiparasitic activity independent of the nitro group, Antimicrob. Agents Chemother., 2005, 49, 3715-3723. (b) Cortes, H.C.E., Mueller, N., Esposito, M., Leitão, A., Naguleswaran A., Hemphill A., In vitro efficacy of nitro-and bromo-thiazolyl-salicylamide compounds (thiazolides) against Besnoitia besnoiti infection in Vero cells, Parasitology., 2007, 134, 975-985. 10.1128/AAC.49.9.3715-3723.2005Search in Google Scholar PubMed PubMed Central

[33] Müller J., Rühle G., Müller N., Rossignol J.-F., Hemphill A., In vitro effects of thiazolides on Giardia lamblia WB clone C6 cultured axenically and in coculture with Caco2 cells, Antimicrob. Agents Chemother., 2006, 50, 162-170. 10.1128/AAC.50.1.162-170.2006Search in Google Scholar PubMed PubMed Central

[34] Wilcken R., Zimmermann M.O., Lange A., Joerger A.C., Boeckler F.M., Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology, J. Med. Chem., 2013, 56, 1363-1388. 10.1021/jm3012068Search in Google Scholar PubMed

[35] Pink A.R., Hudson M-A., Mouriès K., Bendig M., Opportunities and Challenges in Antiparasitic Drug Discovery, Nat. Rev. Drug. Discov., 2005, 4, 727-740. 10.1038/nrd1824Search in Google Scholar PubMed

[36] dos Santos P.R., Roesch Ely M., Dumas F., Moura S., Synthesis, structural characterization and previous cytotoxicity assay of Zn(II) complex containing 1,10-phenanthroline and 2,2’-bipyridine with valproic acid, Polyhedron, 2015, 90, 239-244. 10.1016/j.poly.2015.02.012Search in Google Scholar

[37] Lu Y., Shi T., Wang Y., Yang H., Yan X., Luo X., et al., Halogen Bonding-A Novel Interaction for Rational Drug Design?, J. Med. Chem., 2009, 52, 2854-2862 10.1021/jm9000133Search in Google Scholar PubMed

[38] Topliss J.G., Costello R.J., Chance correlations in structure-activity studies using multiple regression analysis, J. Med. Chem., 1972, 15, 1066-1068. 10.1021/jm00280a017Search in Google Scholar PubMed

[39] Hemmer M.C., Steinhauer V., Gasteiger J., Deriving the 3D structure of organic molecules from their infrared spectra, Vib. Spectrosc., 1999, 19, 151-164. 10.1016/S0924-2031(99)00014-4Search in Google Scholar

[40] Nowaczyk A., Kulig K., Malawska B., 1-(3-(4-Arylpiperazin-1-yl)-propyl)-Pyrrolidin -2-one Derivatives as α1-Adrenoceptor Antagonists: A QSAR Study, QSAR Comb. Sci., 2009, 28, 979-988. 10.1002/qsar.200810145Search in Google Scholar

[41] Ghose A.K., Viswanadhan V.N., Wendoloski J.J., A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases, Comb. Chem., 1999, 1, 55-68. 10.1021/cc9800071Search in Google Scholar PubMed

[42] Li J., Li S., Baia Ch., Liu H., Gramatica P., Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis, J. Mol. Graph. Mod., 2013, 44, 266–277. 10.1016/j.jmgm.2013.07.004Search in Google Scholar PubMed

[43] Pérez González M., Terán C., Teijeira M., Morales Helguera A., Radial distribution function descriptors: an alternative for predicting A2 A adenosine receptors agonists, Eur. J. Med. Chem., 2006, 41, 56-62. 10.1016/j.ejmech.2005.08.004Search in Google Scholar PubMed

[44] Asadabadi E.B., Abdolmaleki P., Barkooie S.M.H., Jahandideh S., Rezaei M.A., A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase, Comp. Biol. Med., 2009, 39, 1089-1095. 10.1016/j.compbiomed.2009.09.003Search in Google Scholar PubMed

Received: 2014-11-4
Accepted: 2015-6-20
Published Online: 2015-9-7

© 2015 Raul Mocelo-Castell et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/chem-2015-0127/html
Scroll Up Arrow