Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 9, 2015

Simultaneous determination of 223 pesticides in tobacco by GC with simultaneous electron capture and nitrogen-phosphorous detection and mass spectrometric confirmation

  • Bozena Lozowicka , Ewa Rutkowska and Izabela Hrynko
From the journal Open Chemistry

Abstract

LSE (liquid-solid extraction), MSPD (matrix solid phase dispersion) and QuEChERS (quick, easy, cheap, effective, rugged and safe) extractions followed by GC-μECD/NPD to determine 223 pesticide residues in tobacco simultaneously were developed and compared. The identities of ten model pesticides were confirmed by GC-MS/MS. The type and amount of dispersant (Florisil, silica gel and alumina), sample mass, cleanup adsorbent, and the eluent (hexane, acetone and acetonitrile) were optimized. Linearity, recovery, LOQ, LOD, and matrix effect were compared. Most recoveries were 71−120% (RSD < 18%). LOD and LOQ were much lower than the CORESTA GRLs. The best method was QuEChERS: acetonitrile extraction and dispersive solid-phase extraction using primary-secondary amine and graphitized carbon.

Graphical Abstract

References

[1] Gupta A., Impact of Pesticides on Human and Ecosystem Health: Scientific, Ethical and Policy Issues, Proceedings of National Seminar on toxicity of Chemicals and their Hazards with Special Reference to heavy Metals (St. Edmund’s College, Shillong), 2008, 61-72. Search in Google Scholar

[2] Ghelli J., Helio A., Martins-Jumor S.P., Andre S., Development of a fast and cost effective multi-residue method to determine pesticides in tobacco by LC/MS/MS, Technical note, 2009. Search in Google Scholar

[3] Clapp W.L., Shelar G.R., The determination of chlorinated pesticides in mainstream smoke, 1972, http://legacy.library.ucsf.edu/tid/cdv69d00. Search in Google Scholar

[4] Clark T., Kaußmann E., Römer E., Scheper, G. The fate of imidacloprid in tobacco smoke of cigarettes made from imidacloprid-treated tobacco, Pestic. Sci., 1998, 52, 119-125. 10.1002/(SICI)1096-9063(199802)52:2<119::AID-PS683>3.0.CO;2-ZSearch in Google Scholar

[5] Cooperation Centre for Scientific Research Relative to Tobacco, Guide No. 1: The Concept and Implementation of Agrochemical Guidance Residue Levels, 2008, http://www.coresta.org. Search in Google Scholar

[6] Łozowicka B., Piotr Kaczynski P., Paritova A., Sarsembayeva N., Kuzembekova G., Abzhalieva A., Alihan K., Pesticide residues in grain from Kazakhstan and potential health risk associated with the exposures to detected pesticides, Food Chem. Toxicol. 2014, 64, 238-248. Search in Google Scholar

[7] Łozowicka B., Jankowska M., Rutkowska E. , Hrynko I., Kaczyński P., Miciński J., The evaluation of a fast and simple pesticide multiresidue method in various herbs by gas chromatography, J. Nat. Med., 2014, 68, 95-111. 10.1007/s11418-013-0777-9Search in Google Scholar

[8] Wang X., Xu G., Wang F., Sun H., Li Y., Iprodione Residues and Dissipation Rates in Tobacco Leaves and Soil, Bull Environ. Contam. Toxicol., 2012, 89, 877-881. 10.1007/s00128-012-0783-8Search in Google Scholar

[9] Łozowicka B., Jankowska M., Rutkowska E., Hrynko I., Kaczyński P., Metoda oznaczania pozostałości środków ochrony roślin w tytoniu, Determination method of pesticide residues in tobacco, Prog. Plant Prot./Post. Ochr. Roślin, 2011, 51, 721-726, (in Polish). Search in Google Scholar

[10] Lee J.M., Park J.W., Jang G.Ch., Hwang K.J., Comparative study of pesticide multi-residue extraction in tobacco for gas chromatography-triple quadrupole mass spectrometry, J. Chromatogr. A, 2008, 1187, 25-33. 10.1016/j.chroma.2008.02.035Search in Google Scholar

[11] Haib J., Hofer I., Renaud J.M., Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry, J. Chromatogr. A, 2003, 1020, 173-187. 10.1016/j.chroma.2003.08.049Search in Google Scholar

[12] Lee J.M., Jang G.Ch., Hwang K.J., Analysis of agrochemical residues in tobacco using QuECheRS method by GC-MS/MS, J. Korean Soc. Tob. Sci., 2007, 29, 132-139. Search in Google Scholar

[13] Zhou T., Xiao X., Li G., Hybrid Field-Assisted Solid–Liquid–Solid Dispersive Extraction for the Determination of Organochlorine Pesticides in Tobacco with Gas Chromatography, Anal. Chem., 2012, 84, 420-427. 10.1021/ac202798wSearch in Google Scholar

[14] Liao Q.G., Zhou Y.M., Lu L.G., Wang L.B., Feng X.H., Determination of twelve herbicides in tobacco by a combination of solid-liquid-solid dispersive extraction using multi-walled carbon nanotubes, dispersive liquid-liquid micro-extraction, and detection by GC with triple quadrupole mass spectrometry, Microchim Acta, 2014, 181, 163-169. 10.1007/s00604-013-1086-4Search in Google Scholar

[15] Zhang L., Liu S., Cui X., Pan C., Zhang A., Chen F., A review of sample preparation methods for the pesticide residue analysis in foods, Cent. Eur. J. Chem., 2012, 10, 900-925. 10.2478/s11532-012-0034-1Search in Google Scholar

[16] Cai J., Gao Y., Zhu X., Su Q., Matrix solid phase dispersion-Soxhlet simultaneous extraction clean-up for determination of organochlorine pesticide residues in tobacco, Anal. Bioanal. Chem., 2005, 383, 869-874. 10.1007/s00216-005-0076-8Search in Google Scholar

[17] Chen X., Zhao K., Ge B., Chen Q., Simultaneous Determination of 44 Pesticides in Tobacco by UPLC/MS/MS and a Modified QuEChERS Procedure, J. AOAC Int., 2013, 96, 422-431. 10.5740/jaoacint.11-524Search in Google Scholar

[18] Li M., Jin Y., Li H.F., Hashi Y., Ma Y., Lin J.M., Rapid determination of residual pesticides in tobacco by the quick, easy, cheap, effective, rugged, and safe sample pretreatment method coupled with LC-MS, J. Sep. Sci., 2013, 36, 2522-2529. 10.1002/jssc.201201091Search in Google Scholar

[19] Khana Z.S., Ghoshb R.K., Giramea R., Utturea S.C., Gadgila M., Banerjeea K., et al., Optimization of a sample preparation method for multiresidue analysis of pesticides in tobacco by single and multi-dimensional gas chromatography-mass spectrometry, J. Chromatogr. A, 2014, 1343, 200-206. 10.1016/j.chroma.2014.03.080Search in Google Scholar

[20] PPDB, Pesticide Properties DataBase, University of Hertfordshire, http://sitem.herts.ac.uk/aeru/footprint/en. Search in Google Scholar

[21] EURACHEM Guide, The Fitness for Purpose of Analytical Methods, A laboratory Guide to Method Validation and Related Topics, 1998, 24-27. Search in Google Scholar

[22] European Commission Method Validation and Quality Control Procedures for Pesticide Residues Analysis in food and feed, Document N° SANCO/12495/2011, Brussels, 1 January 2012. Search in Google Scholar

[23] Commission Decision (2002/657/EC) of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Off. J. Eur. Comm., L221/8, 17 August 2002. Search in Google Scholar

[24] Luke M.A., Froberg J.E., Masumoto H.T., Extraction and Cleanup of Organochlorine, Organophosphate, Organonitrogen, Hydrocarbon Pesticides in Produce for Determination by Gas-Liquid Chromatography, J. Assoc. Off. Anal. Chem., 1975, 58, 1020-1026. 10.1093/jaoac/58.5.1020Search in Google Scholar

[25] Luke M.A., Froberg J.E., Dosse G.M., Masumoto H.T., Improved Multiresidue Gas Chromatographic Determination of Organophosphorus, Organonitrogen and Organohalogen Pesticides in Produce, Using Flame Photometric and Electrolytic Conductivity Detectors, J. Assoc. Off. Anal. Chem., 1981, 64, 1187-1195. 10.1093/jaoac/64.5.1187Search in Google Scholar

[26] Zweig G., New and updated methods, Academic Press. Inc., London, UK, 1978. Search in Google Scholar

[27] Kadenczki L., Arpad Z., Gardi I., Ambrus A., Gyorfi L., Reese G., Column extraction of residues of several pesticides from fruits and vegetables. A simple multiresidue analysis method, J. Assoc. Off. Ana. Chem., 1992, 75, 53-61. 10.1093/jaoac/75.1.53Search in Google Scholar

[28] Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce, J. AOAC Int., 2003, 86, 412-431. 10.1093/jaoac/86.2.412Search in Google Scholar

[29] Ferrer C., Lozano A., Agüera A., Jiménez A., Fernández A.R., Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables, J. Chromatogr. A, 2011, 1218, 7634-7639. 10.1016/j.chroma.2011.07.033Search in Google Scholar

[30] Anastassiades M., Maštovská K., Lehotay S.J., Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides, J. Chromatogr. A, 2003, 1015, 163-184. 10.1016/S0021-9673(03)01208-1Search in Google Scholar

[31] Cochran J., Evaluation of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the determination of pesticides in tobacco, J. Chromatogr. A, 2008, 1186, 202-210. 10.1016/j.chroma.2008.01.043Search in Google Scholar PubMed

[32] Ministry of Agriculture and Rural Development, Online database on plant protection products, http://www.minrol.gov.pl/eng/Ministry/Online-database-on-plant-protection products. Search in Google Scholar

Received: 2014-12-11
Accepted: 2015-7-8
Published Online: 2015-9-9

© 2015 Bozena Lozowicka et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.3.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0129/html
Scroll to top button