Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 6, 2015

Prospects of geothermal water Use in cultivation of Spirulina

Katarzyna Godlewska , Barbara Tomaszewska , Izabela Michalak , Wiesław Bujakowski and Katarzyna Chojnacka
From the journal Open Chemistry


Spirulina has been studied due to its commercial importance as a source of essential amino acids, protein, vitamins, fatty acids etc. Most of the culture systems in use today are open ponds. The new approach proposed in this paper is to use the geothermal water as a medium for microalgae cultivation. Poland has beneficial conditions for wide geothermal use, as one of the environmentally friendly and sustainable renewable energy sources. In the planned research, geothermal water could be used to prepare microalgal culture medium, to heat greenhouses with bioreactors used for the growth of Spirulina, to dry the obtained biomass, as well as to heat the ground in foil tunnels. Using geothermal water gives the possibility to produce algae in open ponds covered with greenhouses and to cultivate plants during winter. The obtained algae can be used for the production of algal bio-products (e.g. homogenates), having the potential application in plant cultivation.

Graphical Abstract


[1] Piñero Estrada J.E., Bermejo Bescós P., Villar Del Fresno A.M. Antioxidant activity of different fractions of Spirulina platensis protean extract, Il Farmaco., 2001, 56, 497-500. 10.1016/S0014-827X(01)01084-9Search in Google Scholar

[2] Milledge J.J., Commercial application of microalgae other than as biofuels: a brief review, Rev. Environ. Sci. Biotechnol., 2011, 10, 31-41. 10.1007/s11157-010-9214-7Search in Google Scholar

[3] Huang Z., Guo B.J., Wong R.N.S., Jiang Y., Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis, Food Chem., 2007, 100, 1137-1143. 10.1016/j.foodchem.2005.11.023Search in Google Scholar

[4] Belay A., Ota Y., Miyakawa K., Shimamatsu H., Current knowledge on potential health benefits of Spirulina, J. Appl. Phycol., 1993, 5, 235-241. 10.1007/BF00004024Search in Google Scholar

[5] Spolaore P., Joannis-Cassan C., Duran E., Isambert A., Commercial applications of microalgae, J. Biosci. Bioeng., 2006, 101(2), 87-96. 10.1263/jbb.101.87Search in Google Scholar

[6] Olguin E.J., Galicia S., Angulo-Guerrero O., Hernández E., The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste, Bioresour. Technol., 2001, 77, 19-24. 10.1016/S0960-8524(00)00142-5Search in Google Scholar

[7] Mishima T., Murata J., Toyoshima M., Fujii H., Nakajima M., Hayashi T., Kato T., Saiki I., Inhibition of tumor invasion and metastasis by calcium spirulan (Ca- SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis, Clin. Exp. Metastasis, 1998, 16, 541-550. 10.1023/A:1006594318633Search in Google Scholar

[8] Selmi C., Leung P.SC. Fischer L., German B., Yang C.-Y., Kenny T. P., Cysewsky G.R., Gershwin M.E., The effects of Spirulina on anemia and immune function in senior citizens, Cell. Mol. Immunol., 2011, 8, 248-254. 10.1038/cmi.2010.76Search in Google Scholar PubMed PubMed Central

[9] Layam A., Reddy C.L.K., Antidiabetic property of Spirulina, Diabetol. Croat., 2006, 35(2), 29-33. Search in Google Scholar

[10] Cingi C., Conk- Dalay M., Cakli H., Bal C., The effects of Spirulina on allergic rhinitis, Eur. Arch. Otorhinolaryngol., 2008, 265, 1219-1223. 10.1007/s00405-008-0642-8Search in Google Scholar PubMed

[11] Colla L.M., Muccillo-Baisch A.L., Costa J.A.V., Spirulina platensis effect on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed hypercholesterolemic diet, Braz. Arch. Biol. Technol., 2008, 51(2), 405-411. 10.1590/S1516-89132008000200022Search in Google Scholar

[12] Ayehunie S., Belay A., Baba T.W., Ruprecht R.M., Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis), J. Acquir. Immune Defic. Syndr. Human Retrovirol., 1998, 18, 7-12. 10.1097/00042560-199805010-00002Search in Google Scholar

[13] Verma S., Samarth R., Panwar M., Evaluation of radioprotective effects of Spirulina in swiss albino mice, Asian J. Exp. Sci., 2006, 20(1), 121-126. Search in Google Scholar

[14] Ferreira-Hermosillo A., Torres-Duran P.V., Juarez-Oropeza M.A., Hepatoprotective effects of Spirulina maxima in patients with non-alkoholic fatty liver disease: a case series, J. Med. Case Rep., 2010, 4(103), 1-5. 10.1186/1752-1947-4-103Search in Google Scholar

[15] Hirahashi T., Matsumoto M., Hazeki K., Saeki Y., UI M., Seya T., Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis., Internat. Immunopharmacol., 2002, 2(4), 423- 434. 10.1016/S1567-5769(01)00166-7Search in Google Scholar

[16] Grawish M.E., Effect of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7, 12-dimethylbenzSearch in Google Scholar

[a]anthracene, Oral Oncol., 2008, 44(10), 956-962. 10.1016/j.oraloncology.2007.11.014Search in Google Scholar

[17] Abd El-Baky H.H., El Baz F.K., El-Baroty S., Characterization of nutraceutical compounds in blue green ala Spirulina maxima, J. Med. Plants Res., 2008, 2(10), 292-300. Search in Google Scholar

[18] Borowitzka M.A., Commercial production of microalgae: ponds, tanks, tubes and fermenters, J. Biotechnol., 1999, 70, 313-321. 10.1016/S0168-1656(99)00083-8Search in Google Scholar

[19] Gouveia L., Oliveira A.C., Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 2009, 36(2), 269-274. 10.1007/s10295-008-0495-6Search in Google Scholar PubMed

[20] Mar W., Effect of Spirulina on growth, yield and nutritive value of Vigna unguiculata (L.) Walp., Univ. Res. J., 2014, 6(1), 189-201. Search in Google Scholar

[21] Hoffmann J.P., Wastewater treatment with suspended and nonsuspended algae, J. Phycol., 1998, 34, 757-763. 10.1046/j.1529-8817.1998.340757.xSearch in Google Scholar

[22] Chojnacka K., Chojnacki A., Górecka H., Trace element removal by Spirulina sp. from copper smelter and refinery effluents, Hydrometallur., 2004, 73(1-2), 147-153. 10.1016/j.hydromet.2003.10.003Search in Google Scholar

[23] Vonshak A., Spirulina platensis (Arthrospira): Physiology, Cell- biology and Biotechnology, Taylor & Francis Ltd, 1997. 10.1201/9781482272970Search in Google Scholar

[24] Grobbelaar J. U., Microalgae mass culture: the constraints of scaling-up, J. Appl. Phycol., 2012, 24, 315-318. 10.1007/s10811-011-9728-6Search in Google Scholar

[25] Converti A., Lodi A., Del Borhi A., Solisio C., Cultivation of Spirulina platensis in a combined airlift-tubular reactor system, Biochem. Eng. J., 2006, 32, 13-18. 10.1016/j.bej.2006.08.013Search in Google Scholar

[26] Posten C., Design principles of photo-bioreactors for cultivation of microalgae, Eng. Life Sci., 2009, 9(3), 165-177. 10.1002/elsc.200900003Search in Google Scholar

[27] Moheimani N.R., Borowitzka M.A., Limits to productivity of the alga Pleurochrysis cartetae (Haptophyta) grown in outdoor raceway ponds, Biotechnol. Bioeng., 2007, 96(1), 27-36. 10.1002/bit.21169Search in Google Scholar PubMed

[28] Andrade M.R., Costa J.A.V., Outdoor and indoor cultivation of Spirulina platensis in the extreme south of Brazil, Verl. d. Zeitschr. F. Naturforsch., 2008, 63c, 85-90. 10.1515/znc-2008-1-216Search in Google Scholar PubMed

[29] Costa J.A.V., Colla L.M., Filho P.D., Kabke K., Weber A., Modeling of Spirulina platensis growth in fresh water using response surface methodology, World J. Microbiol. Biotechnol., 2002, 18, 603-607. 10.1023/A:1016822717583Search in Google Scholar

[30] Oliveira M.A.C.L.DE, Monteiro M.P.C., Robbs P.G., Leite S.G.F., Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures, Aquacult. Int., 1999, 7, 261-275. 10.1023/A:1009233230706Search in Google Scholar

[31] Andrade M.R., Costa J.A.V., Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate, Aquaculture, 2007, 264(1-4), 130-134. 10.1016/j.aquaculture.2006.11.021Search in Google Scholar

[32] Christenson L., Sims R., Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 2011, 29(6), 686-702. 10.1016/j.biotechadv.2011.05.015Search in Google Scholar PubMed

[33] Ugwu C.U., Aoyagi H., Uchiyama H., Photobioreactors for mass cultivation of algae, Bioresour. Technol., 2008, 99(10), 4021-4028. 10.1016/j.biortech.2007.01.046Search in Google Scholar PubMed

[34] John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Micro and macroalgal biomass: A renewable source for bioethanol, Bioresour. Technol., 2011, 102(1), 186-193. 10.1016/j.biortech.2010.06.139Search in Google Scholar PubMed

[35] Jorquera O., Kiperstok A., Sales E.A., Embiruçu M., Ghirardi M.L., Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol., 2010, 101(4), 1406-1413. 10.1016/j.biortech.2009.09.038Search in Google Scholar

[36] Sierra E., Acién F.G., Fernández J.M., García J.L., Gonzlez C., Molina E., Characterization of a flat plate photobioreactor for the production of microalgae, Chem. Eng. J., 2008, 138(1-3), 136-147. 10.1016/j.cej.2007.06.004Search in Google Scholar

[37] Xu L., Weathers P.J., Xiong X.-R., Liu C.-Z., Microalgal bioreactors: challenges and opportunities, Eng. Life Sci., 2009, 9(3), 178-189. 10.1002/elsc.200800111Search in Google Scholar

[38] Carvalho A.P., Meireles L.A., Malcata F.X., Microalgal reactors: A review of enclosed system designs and performances, Biotechnol. Prog., 2006, 22, 1490-1506. 10.1002/bp060065rSearch in Google Scholar

[39] Lund J. W., Direct utilization of geothermal energy. Energies, 2010, 3, 1443-1471. 10.3390/en3081443Search in Google Scholar

[40] Barbier E., Geothermal energy technology and current status: an overview, Renew. Sustain. Energy Rev., 2002, 6(1-2), 3-65. 10.1016/S1364-0321(02)00002-3Search in Google Scholar

[41] Andritsos N., Dalabakis P., Karydakis G., Kolios N., Fytikas M., Characteristics of low-enthalpy geothermal applications in Greece. Renew. Energ., 2011, 36, 1298-1305. 10.1016/j.renene.2010.10.008Search in Google Scholar

[42] Andritsos N., Dalabakis P., Karydakis G., Kolios N., Fytikas M., Update and characteristics of low-enthalpy geothermal applications in Greece. Proceed. Europ. Geother. Congr., 2007. Search in Google Scholar

[43] Kępińska B., Geothermal energy country update report from Poland, 2010-2014, Proc. World Geother. Cong., 2015, Australia. Search in Google Scholar

[44] Tomaszewska B., Szczepański A., Possibilities for the efficient utilization of spent geothermal waters. Environ. Sci. Pollut. Res., 2014, 21, 11409-11417. 10.1007/s11356-014-3076-4Search in Google Scholar PubMed PubMed Central

[45] Kępińska B., Current geothermal activities and prospects in Poland- and overview. Geothermics, 2003, 32, 397-407. 10.1016/j.geothermics.2003.07.006Search in Google Scholar

[46] Tomaszewska B., Bodzek M., Desalination of geothermal waters using a hybrid UF-RO process. Part II: Membrane scaling after pilot-scale tests, Desalination, 2013, 319, 107-114. 10.1016/j.desal.2013.01.030Search in Google Scholar

[47] Tomaszewska B., Pająk L., Using treated geothermal water to replenish network water losses in a district heating system, Pol. J. Environ. Stud., 2013, 22(1), 243-250. Search in Google Scholar

[48] Barbacki A., Classification of geothermal resources in Poland by exergy analysis- Comparative study, Renew. Sustain. Energy Rev., 2012, 16, 123-128. 10.1016/j.rser.2011.07.141Search in Google Scholar

[49] Kanoğlu M., Çengel Y. A., Economic evaluation of geothermal power generation, heating, and cooling, Energy, 1999, 24(6), 501-509. 10.1016/S0360-5442(99)00016-XSearch in Google Scholar

[50] Rosik- Dulewska Cz., Grabda M., Development and yield of vegetables cultivated on substrate heated by geothermal waters part I: Bell pepper, slicing cucumber, tomato, J. Veg. Crop Prod., 2002, 8(1), 133-144. 10.1300/J068v08n01_14Search in Google Scholar

[51] Chowaniec J., “Gorąca kopalina” niecki podhalańskiej na tle innych niecek przytatrzańskich, Biul. Państw. Inst. Geol., 2012, 448, 229-238. Search in Google Scholar

[52] Igliński B., Buczkowski R., Kujawski W., Cichosz M., Piechota G., Geoenergy in Poland, Renew. Sustain. Energy Rev., 2012, 16(5), 2545-2557. 10.1016/j.rser.2012.01.062Search in Google Scholar

[53] Długosz P., Podhale (South Poland) geothermal district heating system, Geothermics, 2003, 32(4-6), 527-533. 10.1016/S0375-6505(03)00064-6Search in Google Scholar

[54] Shalaby T.A., El-Ramady H., Effect of foliar application of bio-stimulants on growth, yield, components, and storability of garlic (Allium sativum L.). Aust. J. Crop Sci., 2014, 8(2), 271-275. Search in Google Scholar

[55] Mohamed A. Y., El- Sehrawy O. A. M., Effect of seaweed extract on fruiting of hindy bisinnara mango trees. J. Am. Sci., 2013, 9(6), 537-544. Search in Google Scholar

[56] Magyar L., Barancsi Z., Dickmann A., Hrotko K., Application of biostimulators in nursery. Horticulture, 2008, 65(1), 515. Search in Google Scholar

[57] Yee N.N., Aye S.M., Htun T.T., Effect of Spirulina on germination, growth, yield and nutritional value of wheat. Universities Res. J., 2012, 5(1), 37-55. Search in Google Scholar

[58] Aly M.S., Esawy M.A., Evaluation of Spirulina platensis as bio.stimulator for organic farming systems. J. Gen. Eng. Biotechnol., 2008, 6(2), 1-7. Search in Google Scholar

[59] Sahu D., Priyadarshani I., Rath B., Cyanobacteria- as potential biofertilizer. CIBTech J. Micro., 2012, 1, 20-26. Search in Google Scholar

[60] Michalak, I., Chojnacka K., Algae as production systems of bioactive compounds. Eng. Life Sci., 2015, 00, 1-17. Search in Google Scholar

Received: 2015-5-13
Accepted: 2015-8-14
Published Online: 2015-11-6

© 2015 Katarzyna Godlewska et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 9.12.2022 from
Scroll Up Arrow