Supplementary Information

Open Access

Tian Ai, Xiaojun Jiang*, Qingyu Liu

Chromium removal from industrial wastewater using *Phyllostachys pubescens* biomass loaded Cu-S nanospheres

The pseudo-first-order adsorption kinetic model:

$$\log(q_{\rm e} - q_{\rm t}) = \log q_{\rm e} - k_1 t$$

where k_1 (min¹) is the rate constant in the pseudo-first-order adsorption process, $q_{\rm e}$ (mg g¹) and $q_{\rm t}$ (mg g¹) are the amounts of adsorbed Cr(III) or Cr(VI) on Cu-S-PPP-SH at equilibrium and at time t (min), respectively. k_1 and $q_{\rm e}$ can be calculated from the slopes and the intercepts of the plots $\log(q_{\rm e}-q_{\rm e})$ versus t.

The pseudo-second-order kinetic model:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$

where k_2 (g mg¹min¹) is the rate constant in the pseudosecond-order adsorption process, and k_2 and $q_{\rm e}$ can be calculated from the slopes and the intercepts of the plots $t \ / \ q_{\rm t}$ versus t. This model is in agreement with chemical adsorption being the rate-controlling step.

The intra-particle diffusion model to elucidate the diffusion mechanism:

$$q_{\rm t} = k_{\rm id}t^{0.5} + I$$

where $k_{\rm id}$ (mg g¹ min^{-0.5}) is the intra-particle diffusion rate constant, and I (mg g¹) is a constant. $k_{\rm id}$ and I (mg g¹) can be calculated from the slopes and the intercepts of the plots $q_{\rm t}$ versus $t^{0.5}$.

The Langmuir model assumes that the uptake of metal ions occurs on a homogeneous surface by monolayer

adsorption without any interaction between adsorbed ions. The linear form of Langmuir isotherm equation is represented as follows:

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{q_{\rm m}b} + \frac{C_{\rm e}}{q_{\rm m}}$$

where $C_{\rm e}$ (mg L¹) is the equilibrium concentration of chromium in solution, $q_{\rm e}$ (mg g¹) is the sorption capacity at equilibrium, $q_{\rm m}$ (mg g¹) is the maximum sorption capacity of the biosorbent, and b (L mg¹) is the Langmuir constant termed as apparent energy of adsorption. The values of $q_{\rm m}$ and b can be determined from the slope $(1/q_{\rm m})$ and intercept $(1/q_{\rm m}b)$ of the linear plots of $C_{\rm e}/q_{\rm e}$ versus $C_{\rm e}$, respectively.

The Freundlich isotherm assumes that the uptake of metal ions occur on a heterogeneous surface by multilayer adsorption and that the amount of adsorbate adsorbed increases infinitely with an increase in concentration. The Freundlich isotherm is expressed by the following empirical equation:

$$q_{\rm e} = K_{\rm F} C_{\rm e}^{1/n}$$

and the logarithmic form of this equation is:

$$\log q_{\rm e} = \log K_{\rm F} + \frac{1}{n} \log C_{\rm e}$$

where $K_{\rm F}$ (${\rm mg^{(1:1/n)}~L^{1/n}~g^{1}}$) is the Freundlich adsorption constant representing the adsorption capacity, \boldsymbol{n} is an arbitrary constant related to the adsorption intensity, and other parameters are the same as in the Langmuir isotherm. The values of $K_{\rm F}$ and \boldsymbol{n} were calculated from slope (1/n) and intercept $(\log K_{\rm F})$ of the plots $\log K_{\rm F}$ versus $\log C_{\rm e}$.

University, Shenyang 110161, PR China

^{*}Corresponding author: Xiaojun Jiang, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, PR China, E-mail: asjiangxiaojun@163.com
Tian Ai: School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, PR China
Qingyu Liu: College of Engineering, Shenyang Agricultural

Table S1: Constants of pseudo-first-order, pseudo-second-order and intra-particle diffusion models for Cr(III) and Cr(VI) on Cu-S-PPP-SH.

Model	Pseudo-first-order				Pseudo	Pseudo-second-order				
Metals	$q_{ m e}$	k_1		R^2	$q_{ m e}$		k_2	R^2		
	(mg g ⁻¹)	(min ⁻¹)			(mg g ⁻¹)		(g mg ⁻¹ min ⁻¹)			
Cr(III)	12.31	-0.087		0.977 16.42			0.010	0.997		
Cr(VI)	14.40	-0.042		0.964	23.05		0.007	0.999		
Model	Intra-particle diffusion									
Metals	k_{id1}	C_1	R^2	$k_{\rm id2}$	C_2	R^2	k_{id3}	C_3	R^2	
	(mg g min ⁻¹)	(mg g ⁻¹)		(mg g min ⁻¹)	(mg g ⁻¹)		(mg g min ⁻¹)	(mg g ⁻¹)		
Cr(III)	6.085	-2.258	0.955	0.267	14.106	0.579	_	-16.670	-0.958	
Cr(VI)	2.850	1.614	0.991	4.450	-0.655	0.962	0.538			

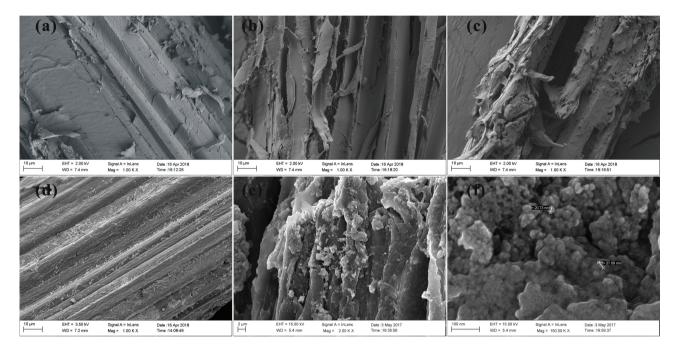


Figure S1: SEM images of (a) PPP, (b) PPP-OH, (c) PPP-SH and (d-f) Cu-S-PPP-SH.

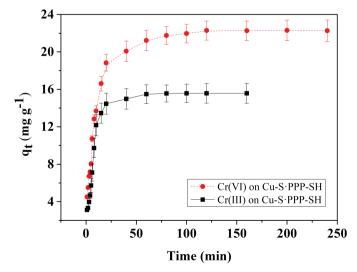


Figure S2: Effect of contact time on adsorption of Cr(III) and Cr(VI) by Cu-S-PPP-SH. Conditions: pH 6.1 and 1.9 for Cr(III) and Cr(VI), initial metal ion concentrations 50 mg $L^{\text{-1}}$, adsorbent concentrations 2.0 g $L^{\text{-1}}$, temperature 25 °C.

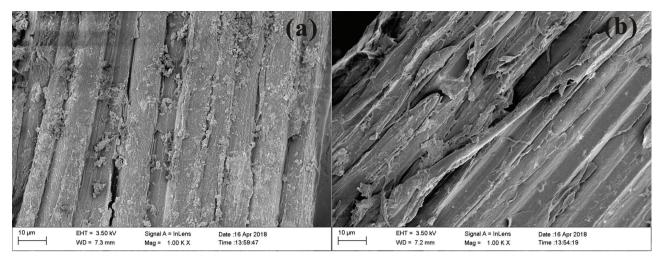
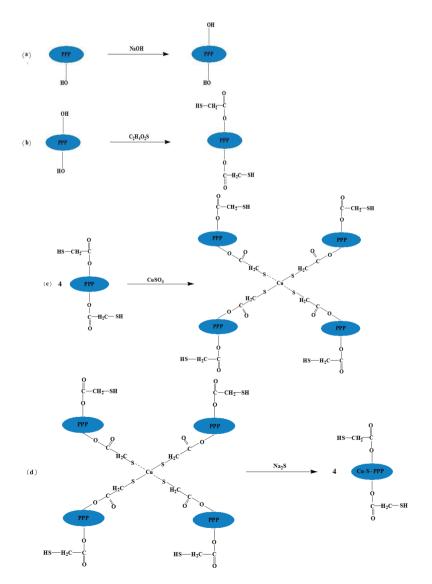



Figure S3: SEM images of Cu-S-PPP-SH for the adsorption of (a) Cr(III) and (b) Cr(VI) after repeated use for three times.

Scheme S1: The possible modification mechanism of (a) PPP-OH, (b) PPP-SH, (c) (PPP-S)₂Cu and (d) Cu-S-PPP-SH.

(a)
$$3\text{Cu-S} \cdot \text{PPP-SH+2H}_2\text{CrO}_4 + 12\text{H}_3\text{O}^+ \rightarrow 3\text{Cu}^{2+} + 3\text{S} + 3\text{PPP-SH+2Cr}^{3+} + 20\text{H}_2\text{O} \\ 3\text{Cu-S} \cdot \text{PPP-SH+2HCrO}_4^- + 14\text{H}_3\text{O}^+ \rightarrow 3\text{Cu}^{2+} + 3\text{S} + 3\text{PPP-SH+2Cr}^{3+} + 22\text{H}_2\text{O} \\ 3\text{Cu-S} \cdot \text{PPP-SH+2CrO}_4^2 + 16\text{H}_3\text{O}^+ \rightarrow 3\text{Cu}^{2+} + 3\text{S} + 3\text{PPP-SH+2Cr}^{3+} + 24\text{H}_2\text{O} \\ 3\text{Cu-S} \cdot \text{PPP-SH+Cr}_2\text{O}_7^2 + 14\text{H}_3\text{O}^+ \rightarrow 3\text{Cu}^{2+} + 3\text{S} + 3\text{PPP-SH+2Cr}^{3+} + 21\text{H}_2\text{O} \\ 3\text{PPP-SH+Cr}^{3+} \rightarrow (\text{PPP-S})_3\text{Cr} + 3\text{H}^+ \\ 2\text{PPP-SH+Cu}^{2+} \rightarrow (\text{PPP-S})_2\text{Cu+2H}^+ \\ \text{(b)} \\ 3\text{Cu-S} \cdot \text{PPP-SH+Cr}^{3+} \rightarrow (\text{Cu-S} \cdot \text{PPP-S})_3\text{Cr} + 3\text{H}^+ \\ 3\text{Cu-S} \cdot \text{PPP-SH+Cu}^{2+} \rightarrow (\text{Cu-S} \cdot \text{PPP-S})_2\text{Cu+2H}^+ \\ \end{cases}$$

Scheme S2: The possible adsorption mechanisms of Cu-S-PPP-SH: (a) Cr(VI) adsorption; (b) Cr(III) adsorption.