Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 3, 2015

Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes

  • Melinda Mojzesová , Mária Mečiarová , Ambroz Almássy , Roger Marti and Radovan Šebesta EMAIL logo
From the journal Chemical Papers


Non-standard experimental conditions can often enhance organocatalytic reactions considerably. The current study explores the effectiveness of a range of non-standard reaction conditions for the asymmetric organocatalytic 1,3-dipolar cycloaddition of a nitrone with α,β-unsaturated aldehydes. The influence of ionic liquids, high-pressure conditions, ultrasound, microwave irradiation and ballmilling was tested as well as the flow process. Because of the low reactivity of the nitrone and unsaturated aldehydes in the 1,3-dipolar cycloaddition, cycloadducts were isolated in only moderate yields from the majority of experiments. However, high diastereo- and enantioselectivities were observed in ionic liquids under solvent-free conditions and in the flow reactor.


Ballini, R., Marcantoni, E., & Petrini, M. (1992). A nitronebased approach to the enantioselective total synthesis of (-)-anisomycin. Journal of Organic Chemistry, 57, 1316-1318. DOI: 10.1021/jo00030a051.10.1021/jo00030a051Search in Google Scholar

Bruckmann, A., Krebs, A., & Bolm, C. (2008). Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chemistry, 10, 1131-1141. DOI: 10.1039/b812536h.10.1039/b812536hSearch in Google Scholar

Chauhan, P., & Chimni, S. S. (2012). Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein Journal of Organic Chemistry, 8, 2132-2141. DOI: 10.3762/bjoc. in Google Scholar PubMed PubMed Central

Chow, S. S., Nevalainen, M., Evans, C. A., & Johannes, C. W. (2007). A new organocatalyst for 1,3-dipolar cycloadditions of nitrones to α,β-unsaturated aldehydes. Tetrahedron Letters, 48, 277-280. DOI: 10.1016/j.tetlet.2006. in Google Scholar

Chua, P. J., Tan, B., Yang, L., Zeng, X., Zhu, D., & Zhong, G. (2010). Highly stereoselective synthesis of indanes with four stereogenic centers via sequential Michael reaction and [3 + 2] cycloaddition. Chemical Communications, 46, 7611-7613. DOI: 10.1039/c0cc01577f.10.1039/c0cc01577fSearch in Google Scholar PubMed

Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chemical Society Reviews, 35, 180-196. DOI: 10.1039/b503848k.10.1039/B503848KSearch in Google Scholar

Du, W., Liu, Y. K., Yue, L., & Chen, Y. C. (2008). Organocatalytic asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins. Synlett, 2997-3000. DOI: 10.1055/s-0028-1087300.10.1055/s-0028-1087300Search in Google Scholar

Gioia, C., Fini, F., Mazzanti, A., Bernardi, L., & Ricci, A. (2009). Organocatalytic asymmetric formal [3 + 2] cycloaddition with in situ-generated N-carbamoyl nitrones. Journal of the American Chemical Society, 131, 9614-9615. DOI: 10.1021/ja902458m.10.1021/ja902458mSearch in Google Scholar PubMed

Gribble, G. W., & Barden, T. C. (1985). Stereocontrolled total syntheses of (-)-hobartine and (+)-aristoteline via an in tramolecular nitrone-olefin cycloaddition. Journal of Organic Chemistry, 50, 5900-5902. DOI: 10.1021/jo00350a103.10.1021/jo00350a103Search in Google Scholar

Hernández, J. G., & Juaristi, E. (2012). Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chemical Communications, 48, 5396-5409. DOI: 10.1039/c2cc30951c.10.1039/c2cc30951cSearch in Google Scholar PubMed

James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., & Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41, 413-447. DOI: 10.1039/c1cs15171a.10.1039/C1CS15171ASearch in Google Scholar

Jen, W. S., Wiener, J. J. M., & MacMillan, D. W. C. (2000). New strategies for organic catalysis: the first enantioselective organocatalytic 1,3-dipolar cycloaddition. Journal of the American Chemical Society, 122, 9874-9875. DOI: 10.1021/ja005517p.10.1021/ja005517pSearch in Google Scholar

Jiao, P., Nakashima, D., & Yamamoto, H. (2008). Enantioselective 1,3-dipolar cycloaddition of nitrones with ethyl vinyl ether: The difference between Brønsted and Lewis acid catalysis. Angewandte Chemie International Edition, 47, 2411-2413. DOI: 10.1002/anie.200705314.10.1002/anie.200705314Search in Google Scholar

Karlsson, S., & Högberg, H. E. (2002). Catalytic enantioselective 1,3-dipolar cycloaddition of nitrones to cyclopent-1-enecarbaldehyde. Tetrahedron: Asymmetry, 13, 923-926. DOI: 10.1016/s0957-4166(02)00231-8.10.1016/S0957-4166(02)00231-8Search in Google Scholar

Karlsson, S., & Högberg, H. E. (2003). Organocatalysts promote enantioselective 1,3-dipolar cycloadditions of nitrones with 1-cycloalkene-1-carboxaldehydes. European Journal of Organic Chemistry, 2003, 2782-2791. DOI: 10.1002/ejoc.20030 0172.Search in Google Scholar

Kobayashi, S., & Jörgensen, A. K. (2002). Cycloaddition reactions in organic synthesis. Weinheim, Germany: Wiley.Search in Google Scholar

Lemay, M., Trant, J., & Ogilvie, W. W. (2007). Hydrazidecatalyzed 1,3-dipolar nitrone cycloadditions. Tetrahedron, 63, 11644-11655. DOI: 10.1016/j.tet.2007. in Google Scholar

Mečiarová, M., Mojzesová, M., & Šebesta, R. (2013). Methyltrioxorhenium- catalysed oxidation of secondary amines to nitrones in ionic liquids. Chemical Papers, 67, 51-58. DOI: 10.2478/s11696-012-0208-5.10.2478/s11696-012-0208-5Search in Google Scholar

Najera, C., & Sansano, J. M. (2009). 1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Organic and Biomolecular Chemistry, 7, 4567-4581. DOI: 10.1039/b913066g.10.1039/b913066gSearch in Google Scholar PubMed

Pagoti, S., Dutta, D., & Dash, J. (2013). A magnetoclick imidazolidinone nanocatalyst for asymmetric 1,3-dipolar cycloadditions. Advanced Synthesis & Catalysis, 355, 3532-3538. DOI: 10.1002/adsc.201300624.10.1002/adsc.201300624Search in Google Scholar

Pellissier, H. (2007). Asymmetric 1,3-dipolar cycloadditions. Tetrahedron, 63, 3235-3285. DOI: 10.41016/j.tet.2007.01. 009.Search in Google Scholar

Pellissier, H. (2012). Asymmetric organocatalytic cycloadditions. Tetrahedron, 68, 2197-2232. DOI: 10.1016/j.tet.2011. 10.103.Search in Google Scholar

Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)- supported organic catalyst. European Journal of Organic Chemistry, 2004, 567-573. DOI: 10.1002/ejoc.200300571.10.1002/ejoc.200300571Search in Google Scholar

Puglisi, A., Benaglia, M., & Chiroli, V. (2013). Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chemistry, 15, 1790-1813. DOI: 10.1039/c3gc40195b.10.1039/c3gc40195bSearch in Google Scholar

Raimondi, W., Lettieri, G., Dulcere, J. P., Bonne, D., & Rodriguez, J. (2010). One-pot asymmetric cyclocarbohydroxylation sequence for the enantioselective synthesis of functionalised cyclopentanes. Chemical Communications, 46, 7247-7249. DOI: 10.1039/c0cc01940b.10.1039/c0cc01940bSearch in Google Scholar PubMed

Rios, R., Ibrahem, I., Vesely, J., Zhao, G. L., & Córdova, A. (2007). A simple one-pot, three-component, catalytic, highly enantioselective isoxazolidine synthesis. Tetrahedron Letters, 48, 5701-5705. DOI: 10.1016/j.tetlet.2007. in Google Scholar

Selim, K. B., Beauchard, A., Lhoste, J., Martel, A., Laurent, M. Y., & Dujardin, G. (2012). Organocatalytic enantio- and diastereoselective 1,3-dipolar cycloaddition between alaninederived ketonitrones and E-crotonaldehyde: efficiency and full stereochemical studies. Tetrahedron: Asymmetry, 23, 1670-1677. DOI: 10.1016/j.tetasy.2012. in Google Scholar

Shen, Z. L., Goh, K. K. K., Wong, C. H. A., Loo, W. Y., Yang, Y. S., Lu, J., & Loh, T. P. (2012). Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chemical Communications, 48, 5856-5858. DOI: 10.1039/c2cc31830j.10.1039/c2cc31830jSearch in Google Scholar PubMed

Stanley, L. M., & Sibi, M. P. (2008). Enantioselective coppercatalyzed 1,3-dipolar cycloadditions. Chemical Reviews, 108, 2887-2902. DOI: 10.1021/cr078371m.10.1021/cr078371mSearch in Google Scholar PubMed

Tan, B., Zhu, D., Zhang, L., Chua, P. J., Zeng, X., & Zhong, G. (2010). Water-more than just a green solvent: a stereoselective one-pot access to all-chiral tetrahydronaphthalenes in aqueous media. Chemistry - A European Journal, 16, 3842-3848. DOI: 10.1002/chem.200902932.10.1002/chem.200902932Search in Google Scholar PubMed

Thorwirth, R., Stolle, A., & Ondruschka, B. (2010). Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chemistry, 12, 985-991. DOI: 10.1039/ c000674b.10.1039/c000674bSearch in Google Scholar

Toma, Š., Šebesta, R., & Mečiarová, M. (2011). Organocatalytic reactions under unusual condition. Current Organic Chemistry, 15, 2257-2281. DOI: 10.2174/138527211796150723.10.2174/138527211796150723Search in Google Scholar

Turro, N. J., Okamoto, M., Gould, I. R., Moss, R. A., Lawrynowicz, W., & Hadel, L. M. (1987). Volumes of activation for the cycloaddition reactions of phenylhalocarbenes to alkenes. Journal of the American Chemical Society, 109, 4973-4976. DOI: 10.1021/ja00250a035.10.1021/ja00250a035Search in Google Scholar

Vesely, J., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L., & Córdova, A. (2008). One-pot catalytic asymmetric cascade synthesis of cycloheptane derivatives. Chemistry - A European Journal, 14, 2693-2698. DOI: 10.1002/chem.200701918.10.1002/chem.200701918Search in Google Scholar PubMed

Weseliński, Ł., St˛epniak, P., & Jurczak, J. (2009). Hybrid diamines derived from 1,1′-binaphthyl-2,2′-diamine and α- amino acids as organocatalysts for 1,3-dipolar cycloaddition of aromatic nitrones to (E)-crotonaldehyde. Synlett, 2261-2264. DOI: 10.1055/s-0029-1217808.10.1055/s-0029-1217808Search in Google Scholar

Weseliński, Ł., SŁyk, E., & Jurczak, J. (2011). The highly enantioselective 1,3-dipolar cycloaddition of alkyl glyoxylatederived nitrones to E-crotonaldehyde catalyzed by hybrid diamines. Tetrahedron Letters, 52, 381-384. DOI: 10.1016/j.tetlet.2010. in Google Scholar

Weseliński, Ł., Kalinowska, E., & Jurczak, J. (2012). The asymmetric organocatalytic 1,3-dipolar cycloaddition of alkyl pyruvate-derived nitrones and α,β-unsaturated aldehydes. Tetrahedron: Asymmetry, 23, 264-270. DOI: 10.1016/ j.tetasy.2012. in Google Scholar

Xing, Y., & Wang, N. X. (2012). Organocatalytic and metalmediated asymmetric [3 + 2] cycloaddition reactions. Coordination Chemistry Reviews, 256, 938-952. DOI: 10.1016/ j.ccr.2012. in Google Scholar

Zhao, D., & Ding, K. (2013). Recent advances in asymmetric catalysis in flow. ACS Catalysis, 3, 928-944. DOI: 10.1021/cs300830x.10.1021/cs300830xSearch in Google Scholar

Zhu, D., Lu, M., Dai, L., & Zhong, G. (2009). Highly stereoselective one-pot synthesis of bicyclic isoxazolidines with five stereogenic centers by an organocatalytic process. Angewandte Chemie International Edition, 48, 6089-6092. DOI: 10.1002/anie.200901249. 10.1002/anie.200901249Search in Google Scholar PubMed

Received: 2014-9-8
Revised: 2014-11-4
Accepted: 2014-11-5
Published Online: 2015-3-3
Published in Print: 2015-5-1

© 2015

Downloaded on 11.12.2023 from
Scroll to top button