Abstract
Non-standard experimental conditions can often enhance organocatalytic reactions considerably. The current study explores the effectiveness of a range of non-standard reaction conditions for the asymmetric organocatalytic 1,3-dipolar cycloaddition of a nitrone with α,β-unsaturated aldehydes. The influence of ionic liquids, high-pressure conditions, ultrasound, microwave irradiation and ballmilling was tested as well as the flow process. Because of the low reactivity of the nitrone and unsaturated aldehydes in the 1,3-dipolar cycloaddition, cycloadducts were isolated in only moderate yields from the majority of experiments. However, high diastereo- and enantioselectivities were observed in ionic liquids under solvent-free conditions and in the flow reactor.
References
Ballini, R., Marcantoni, E., & Petrini, M. (1992). A nitronebased approach to the enantioselective total synthesis of (-)-anisomycin. Journal of Organic Chemistry, 57, 1316-1318. DOI: 10.1021/jo00030a051.10.1021/jo00030a051Search in Google Scholar
Bruckmann, A., Krebs, A., & Bolm, C. (2008). Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chemistry, 10, 1131-1141. DOI: 10.1039/b812536h.10.1039/b812536hSearch in Google Scholar
Chauhan, P., & Chimni, S. S. (2012). Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein Journal of Organic Chemistry, 8, 2132-2141. DOI: 10.3762/bjoc.8.240.10.3762/bjoc.8.240Search in Google Scholar PubMed PubMed Central
Chow, S. S., Nevalainen, M., Evans, C. A., & Johannes, C. W. (2007). A new organocatalyst for 1,3-dipolar cycloadditions of nitrones to α,β-unsaturated aldehydes. Tetrahedron Letters, 48, 277-280. DOI: 10.1016/j.tetlet.2006.11.029.10.1016/j.tetlet.2006.11.029Search in Google Scholar
Chua, P. J., Tan, B., Yang, L., Zeng, X., Zhu, D., & Zhong, G. (2010). Highly stereoselective synthesis of indanes with four stereogenic centers via sequential Michael reaction and [3 + 2] cycloaddition. Chemical Communications, 46, 7611-7613. DOI: 10.1039/c0cc01577f.10.1039/c0cc01577fSearch in Google Scholar PubMed
Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chemical Society Reviews, 35, 180-196. DOI: 10.1039/b503848k.10.1039/B503848KSearch in Google Scholar
Du, W., Liu, Y. K., Yue, L., & Chen, Y. C. (2008). Organocatalytic asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins. Synlett, 2997-3000. DOI: 10.1055/s-0028-1087300.10.1055/s-0028-1087300Search in Google Scholar
Gioia, C., Fini, F., Mazzanti, A., Bernardi, L., & Ricci, A. (2009). Organocatalytic asymmetric formal [3 + 2] cycloaddition with in situ-generated N-carbamoyl nitrones. Journal of the American Chemical Society, 131, 9614-9615. DOI: 10.1021/ja902458m.10.1021/ja902458mSearch in Google Scholar PubMed
Gribble, G. W., & Barden, T. C. (1985). Stereocontrolled total syntheses of (-)-hobartine and (+)-aristoteline via an in tramolecular nitrone-olefin cycloaddition. Journal of Organic Chemistry, 50, 5900-5902. DOI: 10.1021/jo00350a103.10.1021/jo00350a103Search in Google Scholar
Hernández, J. G., & Juaristi, E. (2012). Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chemical Communications, 48, 5396-5409. DOI: 10.1039/c2cc30951c.10.1039/c2cc30951cSearch in Google Scholar PubMed
James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., & Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41, 413-447. DOI: 10.1039/c1cs15171a.10.1039/C1CS15171ASearch in Google Scholar
Jen, W. S., Wiener, J. J. M., & MacMillan, D. W. C. (2000). New strategies for organic catalysis: the first enantioselective organocatalytic 1,3-dipolar cycloaddition. Journal of the American Chemical Society, 122, 9874-9875. DOI: 10.1021/ja005517p.10.1021/ja005517pSearch in Google Scholar
Jiao, P., Nakashima, D., & Yamamoto, H. (2008). Enantioselective 1,3-dipolar cycloaddition of nitrones with ethyl vinyl ether: The difference between Brønsted and Lewis acid catalysis. Angewandte Chemie International Edition, 47, 2411-2413. DOI: 10.1002/anie.200705314.10.1002/anie.200705314Search in Google Scholar
Karlsson, S., & Högberg, H. E. (2002). Catalytic enantioselective 1,3-dipolar cycloaddition of nitrones to cyclopent-1-enecarbaldehyde. Tetrahedron: Asymmetry, 13, 923-926. DOI: 10.1016/s0957-4166(02)00231-8.10.1016/S0957-4166(02)00231-8Search in Google Scholar
Karlsson, S., & Högberg, H. E. (2003). Organocatalysts promote enantioselective 1,3-dipolar cycloadditions of nitrones with 1-cycloalkene-1-carboxaldehydes. European Journal of Organic Chemistry, 2003, 2782-2791. DOI: 10.1002/ejoc.20030 0172.Search in Google Scholar
Kobayashi, S., & Jörgensen, A. K. (2002). Cycloaddition reactions in organic synthesis. Weinheim, Germany: Wiley.Search in Google Scholar
Lemay, M., Trant, J., & Ogilvie, W. W. (2007). Hydrazidecatalyzed 1,3-dipolar nitrone cycloadditions. Tetrahedron, 63, 11644-11655. DOI: 10.1016/j.tet.2007.08.110.10.1016/j.tet.2007.08.110Search in Google Scholar
Mečiarová, M., Mojzesová, M., & Šebesta, R. (2013). Methyltrioxorhenium- catalysed oxidation of secondary amines to nitrones in ionic liquids. Chemical Papers, 67, 51-58. DOI: 10.2478/s11696-012-0208-5.10.2478/s11696-012-0208-5Search in Google Scholar
Najera, C., & Sansano, J. M. (2009). 1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Organic and Biomolecular Chemistry, 7, 4567-4581. DOI: 10.1039/b913066g.10.1039/b913066gSearch in Google Scholar PubMed
Pagoti, S., Dutta, D., & Dash, J. (2013). A magnetoclick imidazolidinone nanocatalyst for asymmetric 1,3-dipolar cycloadditions. Advanced Synthesis & Catalysis, 355, 3532-3538. DOI: 10.1002/adsc.201300624.10.1002/adsc.201300624Search in Google Scholar
Pellissier, H. (2007). Asymmetric 1,3-dipolar cycloadditions. Tetrahedron, 63, 3235-3285. DOI: 10.41016/j.tet.2007.01. 009.Search in Google Scholar
Pellissier, H. (2012). Asymmetric organocatalytic cycloadditions. Tetrahedron, 68, 2197-2232. DOI: 10.1016/j.tet.2011. 10.103.Search in Google Scholar
Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)- supported organic catalyst. European Journal of Organic Chemistry, 2004, 567-573. DOI: 10.1002/ejoc.200300571.10.1002/ejoc.200300571Search in Google Scholar
Puglisi, A., Benaglia, M., & Chiroli, V. (2013). Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chemistry, 15, 1790-1813. DOI: 10.1039/c3gc40195b.10.1039/c3gc40195bSearch in Google Scholar
Raimondi, W., Lettieri, G., Dulcere, J. P., Bonne, D., & Rodriguez, J. (2010). One-pot asymmetric cyclocarbohydroxylation sequence for the enantioselective synthesis of functionalised cyclopentanes. Chemical Communications, 46, 7247-7249. DOI: 10.1039/c0cc01940b.10.1039/c0cc01940bSearch in Google Scholar PubMed
Rios, R., Ibrahem, I., Vesely, J., Zhao, G. L., & Córdova, A. (2007). A simple one-pot, three-component, catalytic, highly enantioselective isoxazolidine synthesis. Tetrahedron Letters, 48, 5701-5705. DOI: 10.1016/j.tetlet.2007.05.176.10.1016/j.tetlet.2007.05.176Search in Google Scholar
Selim, K. B., Beauchard, A., Lhoste, J., Martel, A., Laurent, M. Y., & Dujardin, G. (2012). Organocatalytic enantio- and diastereoselective 1,3-dipolar cycloaddition between alaninederived ketonitrones and E-crotonaldehyde: efficiency and full stereochemical studies. Tetrahedron: Asymmetry, 23, 1670-1677. DOI: 10.1016/j.tetasy.2012.11.010.10.1016/j.tetasy.2012.11.010Search in Google Scholar
Shen, Z. L., Goh, K. K. K., Wong, C. H. A., Loo, W. Y., Yang, Y. S., Lu, J., & Loh, T. P. (2012). Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chemical Communications, 48, 5856-5858. DOI: 10.1039/c2cc31830j.10.1039/c2cc31830jSearch in Google Scholar PubMed
Stanley, L. M., & Sibi, M. P. (2008). Enantioselective coppercatalyzed 1,3-dipolar cycloadditions. Chemical Reviews, 108, 2887-2902. DOI: 10.1021/cr078371m.10.1021/cr078371mSearch in Google Scholar PubMed
Tan, B., Zhu, D., Zhang, L., Chua, P. J., Zeng, X., & Zhong, G. (2010). Water-more than just a green solvent: a stereoselective one-pot access to all-chiral tetrahydronaphthalenes in aqueous media. Chemistry - A European Journal, 16, 3842-3848. DOI: 10.1002/chem.200902932.10.1002/chem.200902932Search in Google Scholar PubMed
Thorwirth, R., Stolle, A., & Ondruschka, B. (2010). Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chemistry, 12, 985-991. DOI: 10.1039/ c000674b.10.1039/c000674bSearch in Google Scholar
Toma, Š., Šebesta, R., & Mečiarová, M. (2011). Organocatalytic reactions under unusual condition. Current Organic Chemistry, 15, 2257-2281. DOI: 10.2174/138527211796150723.10.2174/138527211796150723Search in Google Scholar
Turro, N. J., Okamoto, M., Gould, I. R., Moss, R. A., Lawrynowicz, W., & Hadel, L. M. (1987). Volumes of activation for the cycloaddition reactions of phenylhalocarbenes to alkenes. Journal of the American Chemical Society, 109, 4973-4976. DOI: 10.1021/ja00250a035.10.1021/ja00250a035Search in Google Scholar
Vesely, J., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L., & Córdova, A. (2008). One-pot catalytic asymmetric cascade synthesis of cycloheptane derivatives. Chemistry - A European Journal, 14, 2693-2698. DOI: 10.1002/chem.200701918.10.1002/chem.200701918Search in Google Scholar PubMed
Weseliński, Ł., St˛epniak, P., & Jurczak, J. (2009). Hybrid diamines derived from 1,1′-binaphthyl-2,2′-diamine and α- amino acids as organocatalysts for 1,3-dipolar cycloaddition of aromatic nitrones to (E)-crotonaldehyde. Synlett, 2261-2264. DOI: 10.1055/s-0029-1217808.10.1055/s-0029-1217808Search in Google Scholar
Weseliński, Ł., SŁyk, E., & Jurczak, J. (2011). The highly enantioselective 1,3-dipolar cycloaddition of alkyl glyoxylatederived nitrones to E-crotonaldehyde catalyzed by hybrid diamines. Tetrahedron Letters, 52, 381-384. DOI: 10.1016/j.tetlet.2010.11.015.10.1016/j.tetlet.2010.11.015Search in Google Scholar
Weseliński, Ł., Kalinowska, E., & Jurczak, J. (2012). The asymmetric organocatalytic 1,3-dipolar cycloaddition of alkyl pyruvate-derived nitrones and α,β-unsaturated aldehydes. Tetrahedron: Asymmetry, 23, 264-270. DOI: 10.1016/ j.tetasy.2012.02.003.10.1016/j.tetasy.2012.02.003Search in Google Scholar
Xing, Y., & Wang, N. X. (2012). Organocatalytic and metalmediated asymmetric [3 + 2] cycloaddition reactions. Coordination Chemistry Reviews, 256, 938-952. DOI: 10.1016/ j.ccr.2012.01.002.10.1016/j.ccr.2012.01.002Search in Google Scholar
Zhao, D., & Ding, K. (2013). Recent advances in asymmetric catalysis in flow. ACS Catalysis, 3, 928-944. DOI: 10.1021/cs300830x.10.1021/cs300830xSearch in Google Scholar
Zhu, D., Lu, M., Dai, L., & Zhong, G. (2009). Highly stereoselective one-pot synthesis of bicyclic isoxazolidines with five stereogenic centers by an organocatalytic process. Angewandte Chemie International Edition, 48, 6089-6092. DOI: 10.1002/anie.200901249. 10.1002/anie.200901249Search in Google Scholar PubMed
© 2015