Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 27, 2015

Electrode and electrodeless impedance measurement for determination of orange juices parameters

Romana Seidlová EMAIL logo , Jaroslav Poživil , Jaromír Seidl , Stanislav Ďaďo , Petra Průšová and Lukáš Malec
From the journal Chemical Papers


Electrical impedance spectroscopy (EIS) is a non-destructive, rapid and real-time measurement method which does not require special high-tech measurement devices and can be applied to food quality assessment. This method is rapid, effective and affords low-cost investigation of the product. The conventional EIS method requires a set of metal electrodes in direct contact with the medium to be measured. The complicated electrochemical processes on the electrodes-electrolyte interface could substantially affect the value of the impedance measured. The present study sought to explore the possibilities of using the impedance method for quality control in orange juices, to introduce the electrodeless method of electrolyte impedance measurement and to compare this with the conventional impedance methods. The electrical properties of the orange juices were described with the help of an equivalent circuit. An equivalent circuit was designed with constant phase element approximation. The values of the equivalent circuit components were fitted using a non-standard algorithm inspired by the behaviour of actual ant colonies. Implementing the electrodeless method obviated the electrodes phenomena effects and the behaviour of the electrolyte is similar to inductance. The proposed electrodeless method is generally applicable to measuring the electrochemical properties of electrolytes.


Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121, 24-31. DOI: 10.1016/j.jfoodeng. 2013.08.008.Search in Google Scholar

Badhe, S. G., & Helambe, S. N. (2013). Electrical impedance analysis of commonly used preservatives NaCl and C12H22 O11. Science Research Reporter, 3, 239-242.Search in Google Scholar

Bardos, A., Zare, R. N., & Markides, K. (2005). Inductive behavior of electrolytes in AC conductance mea surements. Chemical Physics Letters, 402, 274-278. DOI: 10.1016/j.cplett.2004. in Google Scholar

Bertemes-Filho, P., Valicheski, R., Pereira, R. M., & Paterno, A. S. (2010). Bioelectrical impedance analysis for bovine milk: Preliminary results. Journal of Physics: Conference Series, 224, 012133. DOI: 10.1088/1742-6596/224/1/012133.10.1088/1742-6596/224/1/012133Search in Google Scholar

Chen, Y. G., Gu, X., Shen, Y. H., & Xing, S. Z. (2006). Optimization of active power filter system pi parameters based on improved ant colony algorithm, mechatronics and automation. In Proceedings of the 2006 International Conference on Mechatronics and Automation, June 25-28, 2006 (pp. 2189-2193). Henan, Luoyang, China: IEEE. DOI: 10.1109/icma.2006.257633.10.1109/ICMA.2006.257633Search in Google Scholar

Damez, J. L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1-1500 kHz range: Simulation with the Fricke/Cole-Cole model. Meat Science, 77, 512-519. DOI: 10.1016/j.meatsci.2007. in Google Scholar PubMed

Daniels, J. S., & Pourmand, N. (2007). Label-free impedance biosensors: Opportunities and challenges. Electroanalysis, 19, 1239-1257. DOI: 10.1002/elan.200603855.10.1002/elan.200603855Search in Google Scholar PubMed PubMed Central

Das, S., Sivaramakrishna, M., Biswas, K., & Goswami, B. (2011). Performance study of a “constant phase angle based” impedance sensor to detect milk adulteration. Sensors and Actuators A: Physical, 167, 273-278. DOI: 10.1016/j.sna. 2011.02.041.Search in Google Scholar

Debnath, L. (2012). Nonlinear partial differential equations for scientists and engineers (pp. 675-687). New York, NY, USA: Springer. DOI: 10.1007/978-0-8176-8265-1.10.1007/978-0-8176-8265-1Search in Google Scholar

Euring, F., Russ, W., Wilke, W., & Grupa, U. (2011). Development of an impedance measurement system for the detection of decay of apples. Procedia Food Science, 1, 1188-1194. DOI: 10.1016/j.profoo.2011. in Google Scholar

Fernandez-Segovia, I., Fuentes, A., Ali˜no, M., Masot, R., Alca˜niz, M., & Barat, J. M. (2012). Detection of frozenthawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113, 210-216. DOI: 10.1016/j. jfoodeng.2012.06.003.Search in Google Scholar

Franco, A. P., Tadini, C. C., & Gut, J. A. W. (2013). Dielectric properties of simulated green coconut water from 500 to 3,000 MHz at temperatures from 10 to 80 C°. In Proceedengs of the 2013 AIChE Annual Meeting Global Challenges for Engineering a Sustainable Future, November 3-8, 2013. San Francisco, CA, USA: AIChE.Search in Google Scholar

Guo, W. C., Zhu, X. H., Liu, H., Yue, R., & Wang, S. J. (2010). Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering, 99, 344-350. DOI: 10.1016/j.jfoodeng.2010. in Google Scholar

Guo, W. C., Liu, Y., Zhu, X. H., & Wang, S. J. (2011a). Temperature-dependent dielectric properties of honey associated with dielectric heating. Journal of Food Engineering, 102, 209-216. DOI: 10.1016/j.jfoodeng.2010. in Google Scholar

Guo, W. C., Zhu, X. H., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011b). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Science and Technology, 44, 224-230. DOI: 10.1016/j.lwt.2010. in Google Scholar

Halambre, S. N., & Badhe, S. G. (2013). Characterization of milk using impedance analysis technique. Deccean Current Science International Research Journal, 8, 132-136.Search in Google Scholar

Jacquelin, J. (1991). A number of models for CPA impedances of conductors and for relaxation in non-Debye dielectrics. Journal of Non-Crystalline Solids, 131-133, 1080-1083. DOI: 10.1016/0022-3093(91)90728-o.10.1016/0022-3093(91)90728-OSearch in Google Scholar

Jacquelin, J. (1994). Theoretical impedance of rough electrodes with smooth shapes of roughness. Electrochimica Acta, 39, 2673-2684. DOI: 10.1016/0013-4686(94)00296-7.10.1016/0013-4686(94)00296-7Search in Google Scholar

Jean, J. (1997). The phasance concept: A review. Current Topics in Electrochemistry, 4, 127-136.Search in Google Scholar

Jennings, A. L., Ordonez, R., & Ceccarelli, N. (2008). An Ant Colony Optimization using training data applied to UAV way point path planning in wind. In Proceedings of the IEEE Swarm Intelligence Symposium, September 21-23, 2008. St. Louis, Missouri, USA: IEEE Computational Intelligence Society. DOI: 10.1109/sis.2008.4668302.10.1109/SIS.2008.4668302Search in Google Scholar

Kagan, R. L., Schuette, W. H., Zierdt, C. H., & MacLowry, J. D. (1977). Rapid automated diagnosis of bacteremia by impedance detection. Journal of Clinical Microbiology, 5, 51-57.10.1128/jcm.5.1.51-57.1977Search in Google Scholar PubMed PubMed Central

Karaskova, P., Fuentes, A., Fernandez-Segovia, I., Alca˜niz, M., Masot, R., & Barat, J. M. (2011). Development of a lowcost non-destructive system for measuring moisture and salt content in smoked fish products. Procedia Food Science, 1, 1195-1201. DOI: 10.1016/j.profoo.2011. in Google Scholar

Katiyar, V. (2013). Food adulteration: The demonic onslaught on health. Saarbr¨ucken, Germany: Lambert Academic Publishing.Search in Google Scholar

Kobayashi, A., Mizutani, K., Wakasuki, N., & Maeda, Y. (2013). Changes of electrical impedance characteristic of pork in heating process. International Proceedings of Chemical, Biological & Environmental Engineering, 50, 74-78. DOI: 10.7763/ipcbee.2013.v50.16.Search in Google Scholar

Kuson, P., & Terdwongworakul, A. (2013). Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. Journal of Food Engineering, 116, 50-56. DOI: 10.1016/j.jfoodeng.2012. in Google Scholar

Li, X. B. (2003). Impedance spectroscopy for manufacturing control material physical properties. Ph.D. thesis, Seattle, WA, USA: University of Washington.Search in Google Scholar

Li, X., Toyoda, K., & Ihara, I. (2011). Coagulation process of soymilk characterized by electrical impedance spectroscopy. Journal of Food Engineering, 105, 563-568. DOI: 10.1016/j.jfoodeng.2011. in Google Scholar

Macdonald, J. R. (1992). Impedance spectroscopy. Annuals of Biomedical Engineering, 20, 289-305. DOI: 10.1007/bf02368 532.Search in Google Scholar

Mahapatra, A. K., Jones, B. L., Nguyen, C. N., & Kannan, G. (2010). Experimental determination of the electrical resistivity of beef. Agricultural Engineering International: CIGR Journal, 12, 124-128.Search in Google Scholar

Maireva, S., Usai, T., & Manhokwe, S. (2013). The determination of adulteration in orange based fruit juices. International Journal of Science and Technology, 2, 365-372.Search in Google Scholar

McAdams, E. (2006). Bioelectrodes. In J. G. Webster (Ed.), Encyclopedia of medical devices and instrumentation. New York, NY, USA: Wiley. DOI: 10.1002/0471732877.emd013.10.1002/0471732877.emd013Search in Google Scholar

Mizukami, Y., Yamada, K., Sawai, Y., & Yamaguchi, Y. (2007). Measurement of fresh tea growth using electrical impedance spectroscopy. Agricultural Journal, 2, 134-139.Search in Google Scholar

Nagy, S., Attaway, J. A., Rhodes, M. E. (1988). Adulteration of fruit juice beverages. New York, NY, USA: CRC Press.Search in Google Scholar

Nandakumar, V., La Belle, J. T., Reed, J., Shah, M., Cochran, D., Joshi, L., & Alford, T. L. (2008). A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 24, 1039-1042. DOI: 10.1016/j.bios.2008. in Google Scholar PubMed

Niu, J., & Lee, J. Y. (2000). A new approach for the determination of fish freshness by electrochemical impedance spectroscopy. Journal of Food Science, 65, 780-785. DOI: 10.1111/j.1365-2621.2000.tb13586.x.10.1111/j.1365-2621.2000.tb13586.xSearch in Google Scholar

Perez-Esteve, E., Fuentes, A., Grau, R., Fernandez-Segovia, I., Masot, R., Alca˜niz, M., & Barat, J. M. (2014). Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control, 35, 360-365. DOI: 10.1016/j.foodcont.2013. in Google Scholar

Ragni, L., Al-Shami, A., Berardinelli, A., Mikhaylenko, G., & Tang, J. (2007). Quality evaluation of shell eggs during stor age using a dielectric technique. Transactions of the ASABE, 50, 1331-1340. DOI: 10.13031/2013.23610.10.13031/2013.23610Search in Google Scholar

Rahman, M. S. A., Mukhopadhyay, S. C., Yu, P. L., Goicoechea, J., Matias, I. R., Gooneratne, C. P., & Kosel, J. (2013). Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. Journal of Food Engineering, 114, 346-360. DOI: 10.1016/j.jfoodeng.2012. in Google Scholar

Rizo, A., Fuentes, A., Fernandez-Segovia, I., Masot, R., Alca˜niz, M., & Barat, J. M. (2013). Development of a new salmon salting-smoking method and process monitoring by impedance spectroscopy. LWT - Food Science and Technology, 51, 218-224. DOI: 10.1016/j.lwt.2012. in Google Scholar

Salamon, M., & Svitok, P. (1959). A low frequency electrodeless conductometer for measuring the electrical conductivity of solutions. Abingdon, UK: Atomic Energy Authority.Search in Google Scholar

Scandurra, G., Tripodi, G., & Verzera, A. (2013). Impedance spectroscopy for rapid determination of honey floral origin. Journal of Food Engineering, 119, 738-743. DOI: 10.1016/j.jfoodeng.2013. in Google Scholar

Seidlova, R., Poživil, J., & Hanta, V. (2012). Classification rule extracting with ant colony algorithms. In Proceedings of the 39th International Conference of Slovak Society of Chemical Engineering, May 25-29, 2012 (pp. 664-671). Bratislava, Slovakia: Slovak Society of Chemical Engineering.Search in Google Scholar

Seidlova, R., Seidl, J., Poživil, J., & Hanta, V. (2013). Application of ant colony algorithm to model electrical impedance spectra of orange juices. In Proceedings of the 40th International Conference of Slovak Society of Chemical Engineering, May 27-31, 2013 (pp. 903-910). Bratislava, Slovakia: Slovak Society of Chemical Engineering.Search in Google Scholar

Skierucha, W., Wilczek, A., & Szypłowska, A. (2012). Dielectric spectroscopy in agrophysics. International Agrophysics, 26, 187-197. DOI: 10.2478/v10247-012-0027-5.10.2478/v10247-012-0027-5Search in Google Scholar

Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105, 625-631. DOI: 10.1016/j.jfoodeng.2011. in Google Scholar

Srinivasan, B., Tung, S., Li, Y. B., & Varshney, M. (2006). Simulation of electrical impedance based microfluidic biosensor for detection of E. coli cells. In Proceedings of the COMSOL Users Conference 2006, October 22-24, 2006. Boston, MA, USA: COMSOL.Search in Google Scholar

Vidaček, S., Medi´c, H., Botka-Petrak, K., Nežak, J., & Petrak, T. (2008). Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). Journal of Food Engineering, 88, 263-271. DOI: 10.1016/j.jfoodeng.2008. in Google Scholar

Wang, L., & Wu, Q. D. (2001). Ant system algorithm for optimization in continuous space. In Proceedings of the 2001 IEEE International Conference on Control Applications, September 7-7, 2011. Mexico City, Mexico: IEEE. DOI: 10.1109/cca.2001.973897.10.1109/CCA.2001.973897Search in Google Scholar

Wu, J., Ben, Y. X., & Chang, H. C. (2005). Particle detection by electrical impedance spectroscopy with asymmetricpolarization AC electroosmotic trapping. Microfluidics and Nanofluidics, 1, 161-167. DOI: 10.1007/s10404-004-0024-5.10.1007/s10404-004-0024-5Search in Google Scholar

Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. Journal of Food Engineering, 87, 274-280. DOI: 10.1016/j.jfoodeng.2007. in Google Scholar

Yang, L., & Bashir, R. (2008). Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances, 26, 135-150. DOI: 10.1016/j. biotechadv.2007.10.003.Search in Google Scholar

Yang, B., Meng, F., & Dong, Y. G. (2013). A coil-coupled sensor for electrolyte solution conductivity measurement. In Proceedings of the 2013 2nd International Conference on Measurement, Information and Control, August 16-18, 2013. Harbin, Heilongjiang, China: IEEE. DOI: 10.1109/mic.2013. 6757915.Search in Google Scholar

Zhang, H. (1995). Electrical properties of foods. Food Engineering, 1, 152. Search in Google Scholar

Zheng, S. (2010). An investigation on electrical properties of major constituents of grape must under fermentation using of electrical impedance spectroscopy. Ph.D. thesis. Melbourne, Australia: RMIT University.Search in Google Scholar

Zhu, X. H., Guo,W. C.,Wu, X. L., &Wang, S. J. (2012). Dielectric properties of chestnut flour relevant to drying with radiofrequency and microwave energy. Journal of Food Engineering, 113, 143-150. DOI: 10.1016/j.jfoodeng.2012. in Google Scholar

Zia, A. I., Syaifudin, A. R. M., Mukhopadhyay, S. C., Yu, P. L., Al-Bahadly, I. H., Gooneratne, C. P., Kosel, J., & Liao, T. S. (2013). Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices. Journal of Physics: Conference Series, 439, 012026. DOI: 10.1088/1742-6596/439/1/012026.10.1088/1742-6596/439/1/012026Search in Google Scholar

Zsivanovits, G., Brashlyanova, B., & Karabadzhov, O. (2012). Dielectric impedance monitoring of heat pump drying of apple slices. Journal of Food Physics, 24-25, 50-58. Search in Google Scholar

Received: 2014-6-5
Revised: 2014-11-23
Accepted: 2014-12-12
Published Online: 2015-3-27
Published in Print: 2015-7-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2022 from
Scroll Up Arrow