Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates

  • Zuzana Lukačovičová EMAIL logo , Darina Lacková , Michal Brienik , Iveta Ondrejkovičová , Ondrej Záborský , Jana Doháňošová and Marian Koman
From the journal Chemical Papers


New salts containing cations of selected pyridine derivatives of the composition [pyH]NO3, where py is 2-pyridylmethanol (2-(hydroxymethyl)pyridine, 2pm), 3-pyridylmethanol (3-(hydroxymethyl) pyridine, 3pm), isonicotinamide (4-(aminocarbonyl)-pyridine, inia) and thionicotinamide (4- (aminothiocarbonyl)pyridine, tnia) were synthesised using two methods. By the first method, the above salts were obtained from reaction mixtures prepared from Fe(NO3)3 ·9H2O and the appropriate pyridine derivative py in ethanol without the addition of acids. The protons required for protonation of the given pyridine derivatives are formed by the protolytic reaction of [Fe(H2O)6]3+, which acts as a cationic Brønstedt acid. These cations are present in the solid state of Fe(NO3)3 · 9H2O as well as in its solutions. Under the second procedure, the salts were prepared by a direct reaction of the selected pyridine derivative py with a diluted solution of HNO3. The first method affords crystals with lower yields but the second method produces microcrystals with higher yields. All the compounds were characterised by elemental analysis, infrared and NMR spectroscopic analyses and [3pmH]NO3 and [2pmH]NO3 by X-ray structure analysis also. [3pmH]NO3 crystallises in the monoclinic and [2pmH]NO3 in the triclinic system.


Allen, F. H. (2002). The Cambridge structural database: A quarter of a million crystal structures and rising. Acta Crystallographica Section B, 38, 380-388. DOI: 10.1107/s0108768102003890.10.1107/S0108768102003890Search in Google Scholar

Ataç, A., Yurdakul, S,., & İde, S. (2006). Synthesis and vibrational spectroscopic studies of isonicotinamide metal(II) halide complexes. Journal of Molecular Structure, 783, 79-87. DOI: 10.1016/j.molstruc.2005. in Google Scholar

Bell, R., Foxton, M. W., & Looker, B. E. (1986). G.B. Patent No. 2,166,737. London, UK: The Intellectual Property Office. Boča, M., Boča, R., Kickelbick, G., Linert, W., Svoboda, I., & Fuess, H. (2002). Novel complexes of 2,6-bis(benzthiazol-2-yl)pyridine. Inorganica Chimica Acta, 338, 36-50. DOI: 10.1016/s0020-1693(02)00900-3.10.1016/S0020-1693(02)00900-3Search in Google Scholar

Boča, M., Kickelbick, G., & Fuess, H. (2004). The presence of iron(III) salts of oxo acids can result in protonation of amino groups. Chemical Papers, 58, 145-147.Search in Google Scholar

Cąkır, S., Biçer, E., Aoki, K., & Co,skun, E. (2006). Structural features of a new [Fe(nicotinamide)2(H2O)4]·[Fe(H2O)6]· (SO4)2·2H2O complex. Crystal Research & Technology, 41, 314-320. DOI: 10.1002/crat.200510580.10.1002/crat.200510580Search in Google Scholar

Castro, L. C. M., Bezier, D., Sortais, J. B., & Darcel, C. (2011). Iron dihydride complex as the pre-catalyst for efficient hydrosilylation of aldehydes and ketones under visible light activation. Advanced Synthesis & Catalysis, 353, 1279-1284. DOI: 10.1002/adsc.201000676.10.1002/adsc.201000676Search in Google Scholar

Chen, L. Z. (2009). 4-Carbamoylpyridinium perchlorate. Acta Crystallographica Section E, 65, o2626. DOI: 10.1107/s1600536809039026.10.1107/S1600536809039026Search in Google Scholar PubMed PubMed Central

Csöregh, I., Czugler, M., Törnroos, K. W., Weber, E., & Ahrendt, J. (1989). Unusual host properties. X-Ray structures of three salt-like crystalline aggregates of 1,1_-binaphthyl-8,8_-dicarboxylic acid. Journal of the Chemical Society, Perkin Transactions 2, 1989, 1491-1497. DOI: 10.1039/p29890001491.10.1039/P29890001491Search in Google Scholar

Daskalova, L. I., Velcheva, E. A., & Binev, I. G. (2007). Changes in the IR spectra and structures of pyridine-3-carboxamidesd0 and -d2 caused bytheir conversion intoazanions-d0 and-d1: Experimental and computational studies. Journal of Molecular Structure, 826, 198-204. DOI: 10.1016/j.molstruc.2006. in Google Scholar

Demir, S., Yilmaz, V. T., & Harrison, W. T. A. (2003). 2-(Hydroxymethyl)pyridinium dihydrogenphosphate. Acta Crystallographica Section C, 59, o378-o380. DOI: 10.1107/s0108270103011077.10.1107/S0108270103011077Search in Google Scholar PubMed

Dieskau, A. P., Begouin, J. M., & Plietker, B. (2011). Bu4N[Fe(CO)3(NO)]-Catalyzed hydrosilylation of aldehydes and ketones. European Journal of Organic Chemistry, 27, 5291-5296. DOI: 10.1002/ejoc.201100717.10.1002/ejoc.201100717Search in Google Scholar

Farrugia, L. J. (1997). ORTEP-3 for Windows - a version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565-566. DOI: 10.1107/s0021889897003117.10.1107/S0021889897003117Search in Google Scholar

Farrugia, L. J. (1999). WinGX suite for small-molecule singlecrystal crystallography. Journal of Applied Crystallography, 32, 837-838. DOI: 10.1107/s0021889899006020.10.1107/S0021889899006020Search in Google Scholar

Fonari, M. S., Ganin, E. V., Tang, S. W., Wang, W. J., & Simonov, Y. A. (2007). Molecular complex of thionicotinamide with 18-membered crown ethers: Synthesis and crystal structures. Journal of Molecular Structure, 826, 89-95. DOI: 10.1016/j.molstruc.2006. in Google Scholar

Gamov, G. A., Dushina, S. V., & Sharnin, V. A. (2014). Stability constants of nickel(II)-nicotinamide complexes in aqueous-ethanol solutions. Russian Journal of Physical Chemistry A, 88, 779-782. DOI: 10.1134/s0036024414050094.10.1134/S0036024414050094Search in Google Scholar

Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z., & Khavasi, H. R. (2007). 4-Carbamoylpyridinium dihydrogen phosphate. Acta Crystallographica Section E, 63, o4027-o4027. DOI: 10.1107/s1600536807042869.10.1107/S1600536807042869Search in Google Scholar

Jona, E., Koman, M.,Melnik, M., & Mroziński, J. (1996). Structural investigation of nickel(II)-nicotinamide-solvent interactions in solid complexes. Crystal structure of [(Ni)H2O)4(NA)2](NO3)2·2H2O. Journal of Coordination Chemistry, 40, 167-176. DOI: 10.1080/00958979608024342.10.1080/00958979608024342Search in Google Scholar

Katcka, M., & Urbański, T. (1968). NMR spectra of pyridine, picolines and hydrochlorides and of their hydrochlorides and methiodides. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Chimiques, 16, 347-350.Search in Google Scholar

Kupfer, K., & Tsoucarjs (1964). Etude de la structure de quelques derives pyridiniques. Bulletin de la Société Fran¸caise de Minéralogie et de Cristallographie, 87, 1-4. (in French) Lackova, D., Ondrejkovičova, I., Padělkova, Z., & Koman, M. (2014). Syntheses, crystal structures and IR spectra of isonicotinamide-isonicotinamidium bis(isonicotinamide)-tetrakis(isothiocyanato)ferrate(III) and isonicotinamidium chloride. Journal of Coordination Chemistry, 64, 1652-1663. DOI: 10.1080/00958972.2014.917634.10.1080/00958972.2014.917634Search in Google Scholar

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., & van de Streek, J. (2006). Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457. DOI: 10.1107/s002188980600731x.10.1107/S002188980600731XSearch in Google Scholar

Martelli, A., Testai, L., Citi, V., Marino, A., Pugliesi, I., Barresi, E., Nesi, G., Rapposelli, S., Taliani, S., Da Settimo, F., Breschi, M. C., & Calderone, V. (2013). Arylthioamides as H2S donors: l-Cysteine-activated releasing properties and vascular effects in vitro and in vivo. ACS Medicinal Chemistry Letters, 4, 904-908. DOI: 10.1021/ml400239a.10.1021/ml400239aSearch in Google Scholar PubMed PubMed Central

Myers, R. F. (1984). U.S. Patent No. 34,428,935. Washington, DC, USA: U.S. Patent and Trademark Office.Search in Google Scholar

Nadeem, S., Bolte, M., Ahmad, S., Fazeelat, T., Tirmizi, S. A., Rauf, M. K., Sattar, S. A., Siddiq, S., Hameed, A., & Haider, S. Z. (2010). Synthesis, crystal structure, antibacterial and antiproliferative activites in vitro of palladium(II) complexes of triphenylphosphine and thioamides. Inorganica Chimica Acta, 363, 3261-3269. DOI: 10.1016/j.ica.2010. in Google Scholar

Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compound. New York, NY, USA: Wiley. Nurakhmetov, N. N., Erkasov, R. S., Omarova, R. A., & Mulkina, R. I. (1988). Spectroscopic research of compounds of inorganic acids with nicotinamide. Koordinatsionnaya Khimiya, 14, 1610-1612.Search in Google Scholar

Olojo, R., & Simoyi, R. H. (2004). Oxyhalogen-sulfur chemistry: Kinetics and mechanism of the oxidation of thionicotinamide by peracetic acid. The Journal of Physical Chemistry A, 108, 1018-1023. DOI: 10.1021/jp036305s.10.1021/jp036305sSearch in Google Scholar

Ondrejkovičova, I., Mikoš, D., & Štefanikova, S. (2008). Preparation and characterization of diethylnicotinamidium perchlorate. Chemical Papers, 62, 536-540. DOI: 10.2478/s11696-008-0058-3.10.2478/s11696-008-0058-3Search in Google Scholar

Ondrejkovičova, I., Wrzecion, M., Nahorska, M., & Mroziński, J. (2009). Five-coordinated iron(III) nicotinamide complexes. Polish Journal of Chemistry, 83, 1547-1553.Search in Google Scholar

Ottley, L. A. M., Rodriguez, M. A., & Boyle, T. J. (2008). 2-(Hydroxymethyl)pyridinium chloride. Acta Crystallographica Section E, 64, o2233. DOI: 10.1107/s1600536808034922.10.1107/S1600536808034922Search in Google Scholar

Pedireddi, V. R., Ranganathan, A., & Chatterjee, S. (1998). Layered structures formed by dinitrobenzoic acids. Tetrahedron Letters, 39, 9831-9834. DOI: 10.1016/s0040-4039(98)02244-8.10.1016/S0040-4039(98)02244-8Search in Google Scholar

Perdih, F. (2012). 4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate. Acta Crystallographica Section E, 68, o2733. DOI: 10.1107/s1600536812035507.10.1107/S1600536812035507Search in Google Scholar PubMed PubMed Central

Ramos-Lima, F. J., Quiroga, A. G., Perez, J. M., & Navarro-Ranninger, C. (2003). Preparation, characterization and cytotoxic activity of new compounds trans-[PtCl2NH3(3-(hydroxymethyl)-pyridine)] and trans-[PtCl2NH3(4-(hydroxymethyl)-pyridine)]. Polyhedron, 22, 3379-3381. DOI: 10.1016/j.poly.2003. in Google Scholar

Sandoval-Chavez, C., Lopez-Cortes, J. G., Gutierrez-Hernandez, A. I., Ortega-Alfaro, M. C., Toscano, A., & Alvarez-Toledano, C. (2009). An expedient approach to ferrocenyl thioamides via Fischer carbanes. Journal of Organometallic Chemistry, 694, 3692-3700. DOI: 10.1016/j.jorganchem.2009. in Google Scholar

Sharif, S., Akkurt, M., Khan, I. U., Nadeem, S., Tirmizi, S. A., & Ahmad, S. (2009). 3-Carbamothioylpyridinium iodide. Acta Crystallographica Section E, 65, o2626. DOI: 10.1107/s1600536809035892.10.1107/S1600536809035892Search in Google Scholar PubMed PubMed Central

Sheldrick, G. M. (1990). Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallographica Section A, 46, 467-473. DOI: 10.1107/s0108767390000277.10.1107/S0108767390000277Search in Google Scholar

Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112-122. DOI: 10.1107/s0108767307043930.10.1107/S0108767307043930Search in Google Scholar PubMed

Siemens (1990). XEMP. Version 4.2. Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Search in Google Scholar

Siemens (1994). XSCANS. Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Search in Google Scholar

Sousa, E. H. S., Pontes, D. L., Diogenes, I. C. N., Lopes, L. G. F., Oliveira, J. S., Basso, L. A., Santos, D. S., & Moreira, I. S. (2005). Electron transfer kinetics and mechanistic study of the thionicotinamide coordinated to the pentacyanoferrate(III)/(II) complexes: A model system for the in vitro activation of thioamides anti-tuberculosis drugs. Journal of Inorganic Biochemistry, 99, 368-375. DOI: 10.1016/j.jinorgbio.2004. in Google Scholar

Stahl, P. H., & Wermuth, C. G. (2011). Pharmaceutical salts: Properties, selection and use. Weinheim, Germany: Wiley.Search in Google Scholar

Suzuki, Y., Tomizawa, H., & Miki, E. (1999). Reaction of hydrous nitrosylruthenium trichloride with 2-pyridinemethanol. Inorganica Chimica Acta, 290, 36-43. DOI: 10.1016/s0020-1693(99)00109-7.10.1016/S0020-1693(99)00109-7Search in Google Scholar

Štefanikova, S., Ondrejkovičova, I., Koman, M., Lis, T., Mroziński, J., & Wrzecion, M. (2008). Physical properties of a new iron(III) complex, [3-pmH·3-pm][Fe(NCS)4(3-pm)2]. Journal of Coordination Chemistry, 61, 3895-3903. DOI: 10.1080/00958970802178489.10.1080/00958970802178489Search in Google Scholar

Tirmizi, S. A., Nadeem, S., Hameed, A., Wattoo, M. H. S., Anwar, A., Ansari, Z. A., & Ahmad, S. (2009). Synthesis, spectral characterization and antibacterial studies of palladium(II) complexes of heterocyclic thiones. Spectroscopy, 23, 299-306. DOI 10.3233/spe-2009-0387.10.1155/2009/763231Search in Google Scholar

Tothadi, S., & Desiraju, G. R. (2012). Unusual co-crystal of isonicotinamide: The structural landscape in crystal engineering. Philosophical Transactions of the Royal Society A, 370, 2900-2915. DOI: 10.1098/rsta.2011.0309.10.1098/rsta.2011.0309Search in Google Scholar PubMed

Treu, O., Pinheiro, J. C., da Costa, E. B., Kondo, R. T., de Souza, R. A., Nogueira, V. M., & Mauro, A. E. (2006). Theoretical and experimental study of the infrared spectrum of isonicotinamide. Journal of Molecular Structure: Theochem, 763, 175-179. DOI: 10.1016/j.theochem.2005. in Google Scholar

Uçar, İ., Karabulut, B., Paaoğlu, H., Büyükgüngör, O., & Bulut, A. (2006). X-ray crystal structure and Cu2+ doped EPR studies of tetraaquabis(isonicotinamide)zinc(II) and cobalt(II) disaccharinate 1.5 hydrate single crystals. Journal of Molecular Structure, 787, 38-44. DOI: 10.1016/j.molstruc.2005. in Google Scholar

Uhrecky, R., Padělkova, Z., Moncol, J., Koman, M., Dlhaň, Ľ., Titiš, J., & Boča, R. (2013). Synthesis, crystal structure, spectra and magnetic properties of new manganese(III) and iron(III) dipicolinate complexes. Polyhedron, 56, 9-17. DOI: 10.1016/j.poly.2013. in Google Scholar

Wu, X. F., Sharif, M., Feng, J. B., Neumann, H., Pews-Davtyan, A., Langer, P., & Beller, M. (2013). A general and practical oxidation of alcohols to primary amides under metal-free conditions. Green Chemistry, 15, 1956-1961. DOI: 10.1039/c3gc40668g. 10.1039/c3gc40668gSearch in Google Scholar

Received: 2014-9-9
Revised: 2015-1-12
Accepted: 2015-1-12
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 3.6.2023 from
Scroll to top button