Abstract
New salts containing cations of selected pyridine derivatives of the composition [pyH]NO3, where py is 2-pyridylmethanol (2-(hydroxymethyl)pyridine, 2pm), 3-pyridylmethanol (3-(hydroxymethyl) pyridine, 3pm), isonicotinamide (4-(aminocarbonyl)-pyridine, inia) and thionicotinamide (4- (aminothiocarbonyl)pyridine, tnia) were synthesised using two methods. By the first method, the above salts were obtained from reaction mixtures prepared from Fe(NO3)3 ·9H2O and the appropriate pyridine derivative py in ethanol without the addition of acids. The protons required for protonation of the given pyridine derivatives are formed by the protolytic reaction of [Fe(H2O)6]3+, which acts as a cationic Brønstedt acid. These cations are present in the solid state of Fe(NO3)3 · 9H2O as well as in its solutions. Under the second procedure, the salts were prepared by a direct reaction of the selected pyridine derivative py with a diluted solution of HNO3. The first method affords crystals with lower yields but the second method produces microcrystals with higher yields. All the compounds were characterised by elemental analysis, infrared and NMR spectroscopic analyses and [3pmH]NO3 and [2pmH]NO3 by X-ray structure analysis also. [3pmH]NO3 crystallises in the monoclinic and [2pmH]NO3 in the triclinic system.
References
Allen, F. H. (2002). The Cambridge structural database: A quarter of a million crystal structures and rising. Acta Crystallographica Section B, 38, 380-388. DOI: 10.1107/s0108768102003890.10.1107/S0108768102003890Search in Google Scholar
Ataç, A., Yurdakul, S,., & İde, S. (2006). Synthesis and vibrational spectroscopic studies of isonicotinamide metal(II) halide complexes. Journal of Molecular Structure, 783, 79-87. DOI: 10.1016/j.molstruc.2005.06.025.10.1016/j.molstruc.2005.06.025Search in Google Scholar
Bell, R., Foxton, M. W., & Looker, B. E. (1986). G.B. Patent No. 2,166,737. London, UK: The Intellectual Property Office. Boča, M., Boča, R., Kickelbick, G., Linert, W., Svoboda, I., & Fuess, H. (2002). Novel complexes of 2,6-bis(benzthiazol-2-yl)pyridine. Inorganica Chimica Acta, 338, 36-50. DOI: 10.1016/s0020-1693(02)00900-3.10.1016/S0020-1693(02)00900-3Search in Google Scholar
Boča, M., Kickelbick, G., & Fuess, H. (2004). The presence of iron(III) salts of oxo acids can result in protonation of amino groups. Chemical Papers, 58, 145-147.Search in Google Scholar
Cąkır, S., Biçer, E., Aoki, K., & Co,skun, E. (2006). Structural features of a new [Fe(nicotinamide)2(H2O)4]·[Fe(H2O)6]· (SO4)2·2H2O complex. Crystal Research & Technology, 41, 314-320. DOI: 10.1002/crat.200510580.10.1002/crat.200510580Search in Google Scholar
Castro, L. C. M., Bezier, D., Sortais, J. B., & Darcel, C. (2011). Iron dihydride complex as the pre-catalyst for efficient hydrosilylation of aldehydes and ketones under visible light activation. Advanced Synthesis & Catalysis, 353, 1279-1284. DOI: 10.1002/adsc.201000676.10.1002/adsc.201000676Search in Google Scholar
Chen, L. Z. (2009). 4-Carbamoylpyridinium perchlorate. Acta Crystallographica Section E, 65, o2626. DOI: 10.1107/s1600536809039026.10.1107/S1600536809039026Search in Google Scholar PubMed PubMed Central
Csöregh, I., Czugler, M., Törnroos, K. W., Weber, E., & Ahrendt, J. (1989). Unusual host properties. X-Ray structures of three salt-like crystalline aggregates of 1,1_-binaphthyl-8,8_-dicarboxylic acid. Journal of the Chemical Society, Perkin Transactions 2, 1989, 1491-1497. DOI: 10.1039/p29890001491.10.1039/P29890001491Search in Google Scholar
Daskalova, L. I., Velcheva, E. A., & Binev, I. G. (2007). Changes in the IR spectra and structures of pyridine-3-carboxamidesd0 and -d2 caused bytheir conversion intoazanions-d0 and-d1: Experimental and computational studies. Journal of Molecular Structure, 826, 198-204. DOI: 10.1016/j.molstruc.2006.05.001.10.1016/j.molstruc.2006.05.001Search in Google Scholar
Demir, S., Yilmaz, V. T., & Harrison, W. T. A. (2003). 2-(Hydroxymethyl)pyridinium dihydrogenphosphate. Acta Crystallographica Section C, 59, o378-o380. DOI: 10.1107/s0108270103011077.10.1107/S0108270103011077Search in Google Scholar PubMed
Dieskau, A. P., Begouin, J. M., & Plietker, B. (2011). Bu4N[Fe(CO)3(NO)]-Catalyzed hydrosilylation of aldehydes and ketones. European Journal of Organic Chemistry, 27, 5291-5296. DOI: 10.1002/ejoc.201100717.10.1002/ejoc.201100717Search in Google Scholar
Farrugia, L. J. (1997). ORTEP-3 for Windows - a version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565-566. DOI: 10.1107/s0021889897003117.10.1107/S0021889897003117Search in Google Scholar
Farrugia, L. J. (1999). WinGX suite for small-molecule singlecrystal crystallography. Journal of Applied Crystallography, 32, 837-838. DOI: 10.1107/s0021889899006020.10.1107/S0021889899006020Search in Google Scholar
Fonari, M. S., Ganin, E. V., Tang, S. W., Wang, W. J., & Simonov, Y. A. (2007). Molecular complex of thionicotinamide with 18-membered crown ethers: Synthesis and crystal structures. Journal of Molecular Structure, 826, 89-95. DOI: 10.1016/j.molstruc.2006.04.034.10.1016/j.molstruc.2006.04.034Search in Google Scholar
Gamov, G. A., Dushina, S. V., & Sharnin, V. A. (2014). Stability constants of nickel(II)-nicotinamide complexes in aqueous-ethanol solutions. Russian Journal of Physical Chemistry A, 88, 779-782. DOI: 10.1134/s0036024414050094.10.1134/S0036024414050094Search in Google Scholar
Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z., & Khavasi, H. R. (2007). 4-Carbamoylpyridinium dihydrogen phosphate. Acta Crystallographica Section E, 63, o4027-o4027. DOI: 10.1107/s1600536807042869.10.1107/S1600536807042869Search in Google Scholar
Jona, E., Koman, M.,Melnik, M., & Mroziński, J. (1996). Structural investigation of nickel(II)-nicotinamide-solvent interactions in solid complexes. Crystal structure of [(Ni)H2O)4(NA)2](NO3)2·2H2O. Journal of Coordination Chemistry, 40, 167-176. DOI: 10.1080/00958979608024342.10.1080/00958979608024342Search in Google Scholar
Katcka, M., & Urbański, T. (1968). NMR spectra of pyridine, picolines and hydrochlorides and of their hydrochlorides and methiodides. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Chimiques, 16, 347-350.Search in Google Scholar
Kupfer, K., & Tsoucarjs (1964). Etude de la structure de quelques derives pyridiniques. Bulletin de la Société Fran¸caise de Minéralogie et de Cristallographie, 87, 1-4. (in French) Lackova, D., Ondrejkovičova, I., Padělkova, Z., & Koman, M. (2014). Syntheses, crystal structures and IR spectra of isonicotinamide-isonicotinamidium bis(isonicotinamide)-tetrakis(isothiocyanato)ferrate(III) and isonicotinamidium chloride. Journal of Coordination Chemistry, 64, 1652-1663. DOI: 10.1080/00958972.2014.917634.10.1080/00958972.2014.917634Search in Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., & van de Streek, J. (2006). Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457. DOI: 10.1107/s002188980600731x.10.1107/S002188980600731XSearch in Google Scholar
Martelli, A., Testai, L., Citi, V., Marino, A., Pugliesi, I., Barresi, E., Nesi, G., Rapposelli, S., Taliani, S., Da Settimo, F., Breschi, M. C., & Calderone, V. (2013). Arylthioamides as H2S donors: l-Cysteine-activated releasing properties and vascular effects in vitro and in vivo. ACS Medicinal Chemistry Letters, 4, 904-908. DOI: 10.1021/ml400239a.10.1021/ml400239aSearch in Google Scholar PubMed PubMed Central
Myers, R. F. (1984). U.S. Patent No. 34,428,935. Washington, DC, USA: U.S. Patent and Trademark Office.Search in Google Scholar
Nadeem, S., Bolte, M., Ahmad, S., Fazeelat, T., Tirmizi, S. A., Rauf, M. K., Sattar, S. A., Siddiq, S., Hameed, A., & Haider, S. Z. (2010). Synthesis, crystal structure, antibacterial and antiproliferative activites in vitro of palladium(II) complexes of triphenylphosphine and thioamides. Inorganica Chimica Acta, 363, 3261-3269. DOI: 10.1016/j.ica.2010.06.015.10.1016/j.ica.2010.06.015Search in Google Scholar
Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compound. New York, NY, USA: Wiley. Nurakhmetov, N. N., Erkasov, R. S., Omarova, R. A., & Mulkina, R. I. (1988). Spectroscopic research of compounds of inorganic acids with nicotinamide. Koordinatsionnaya Khimiya, 14, 1610-1612.Search in Google Scholar
Olojo, R., & Simoyi, R. H. (2004). Oxyhalogen-sulfur chemistry: Kinetics and mechanism of the oxidation of thionicotinamide by peracetic acid. The Journal of Physical Chemistry A, 108, 1018-1023. DOI: 10.1021/jp036305s.10.1021/jp036305sSearch in Google Scholar
Ondrejkovičova, I., Mikoš, D., & Štefanikova, S. (2008). Preparation and characterization of diethylnicotinamidium perchlorate. Chemical Papers, 62, 536-540. DOI: 10.2478/s11696-008-0058-3.10.2478/s11696-008-0058-3Search in Google Scholar
Ondrejkovičova, I., Wrzecion, M., Nahorska, M., & Mroziński, J. (2009). Five-coordinated iron(III) nicotinamide complexes. Polish Journal of Chemistry, 83, 1547-1553.Search in Google Scholar
Ottley, L. A. M., Rodriguez, M. A., & Boyle, T. J. (2008). 2-(Hydroxymethyl)pyridinium chloride. Acta Crystallographica Section E, 64, o2233. DOI: 10.1107/s1600536808034922.10.1107/S1600536808034922Search in Google Scholar
Pedireddi, V. R., Ranganathan, A., & Chatterjee, S. (1998). Layered structures formed by dinitrobenzoic acids. Tetrahedron Letters, 39, 9831-9834. DOI: 10.1016/s0040-4039(98)02244-8.10.1016/S0040-4039(98)02244-8Search in Google Scholar
Perdih, F. (2012). 4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate. Acta Crystallographica Section E, 68, o2733. DOI: 10.1107/s1600536812035507.10.1107/S1600536812035507Search in Google Scholar PubMed PubMed Central
Ramos-Lima, F. J., Quiroga, A. G., Perez, J. M., & Navarro-Ranninger, C. (2003). Preparation, characterization and cytotoxic activity of new compounds trans-[PtCl2NH3(3-(hydroxymethyl)-pyridine)] and trans-[PtCl2NH3(4-(hydroxymethyl)-pyridine)]. Polyhedron, 22, 3379-3381. DOI: 10.1016/j.poly.2003.08.011.10.1016/j.poly.2003.08.011Search in Google Scholar
Sandoval-Chavez, C., Lopez-Cortes, J. G., Gutierrez-Hernandez, A. I., Ortega-Alfaro, M. C., Toscano, A., & Alvarez-Toledano, C. (2009). An expedient approach to ferrocenyl thioamides via Fischer carbanes. Journal of Organometallic Chemistry, 694, 3692-3700. DOI: 10.1016/j.jorganchem.2009.07.044.10.1016/j.jorganchem.2009.07.044Search in Google Scholar
Sharif, S., Akkurt, M., Khan, I. U., Nadeem, S., Tirmizi, S. A., & Ahmad, S. (2009). 3-Carbamothioylpyridinium iodide. Acta Crystallographica Section E, 65, o2626. DOI: 10.1107/s1600536809035892.10.1107/S1600536809035892Search in Google Scholar PubMed PubMed Central
Sheldrick, G. M. (1990). Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallographica Section A, 46, 467-473. DOI: 10.1107/s0108767390000277.10.1107/S0108767390000277Search in Google Scholar
Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112-122. DOI: 10.1107/s0108767307043930.10.1107/S0108767307043930Search in Google Scholar PubMed
Siemens (1990). XEMP. Version 4.2. Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Search in Google Scholar
Siemens (1994). XSCANS. Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Search in Google Scholar
Sousa, E. H. S., Pontes, D. L., Diogenes, I. C. N., Lopes, L. G. F., Oliveira, J. S., Basso, L. A., Santos, D. S., & Moreira, I. S. (2005). Electron transfer kinetics and mechanistic study of the thionicotinamide coordinated to the pentacyanoferrate(III)/(II) complexes: A model system for the in vitro activation of thioamides anti-tuberculosis drugs. Journal of Inorganic Biochemistry, 99, 368-375. DOI: 10.1016/j.jinorgbio.2004.10.004.10.1016/j.jinorgbio.2004.10.004Search in Google Scholar
Stahl, P. H., & Wermuth, C. G. (2011). Pharmaceutical salts: Properties, selection and use. Weinheim, Germany: Wiley.Search in Google Scholar
Suzuki, Y., Tomizawa, H., & Miki, E. (1999). Reaction of hydrous nitrosylruthenium trichloride with 2-pyridinemethanol. Inorganica Chimica Acta, 290, 36-43. DOI: 10.1016/s0020-1693(99)00109-7.10.1016/S0020-1693(99)00109-7Search in Google Scholar
Štefanikova, S., Ondrejkovičova, I., Koman, M., Lis, T., Mroziński, J., & Wrzecion, M. (2008). Physical properties of a new iron(III) complex, [3-pmH·3-pm][Fe(NCS)4(3-pm)2]. Journal of Coordination Chemistry, 61, 3895-3903. DOI: 10.1080/00958970802178489.10.1080/00958970802178489Search in Google Scholar
Tirmizi, S. A., Nadeem, S., Hameed, A., Wattoo, M. H. S., Anwar, A., Ansari, Z. A., & Ahmad, S. (2009). Synthesis, spectral characterization and antibacterial studies of palladium(II) complexes of heterocyclic thiones. Spectroscopy, 23, 299-306. DOI 10.3233/spe-2009-0387.10.1155/2009/763231Search in Google Scholar
Tothadi, S., & Desiraju, G. R. (2012). Unusual co-crystal of isonicotinamide: The structural landscape in crystal engineering. Philosophical Transactions of the Royal Society A, 370, 2900-2915. DOI: 10.1098/rsta.2011.0309.10.1098/rsta.2011.0309Search in Google Scholar PubMed
Treu, O., Pinheiro, J. C., da Costa, E. B., Kondo, R. T., de Souza, R. A., Nogueira, V. M., & Mauro, A. E. (2006). Theoretical and experimental study of the infrared spectrum of isonicotinamide. Journal of Molecular Structure: Theochem, 763, 175-179. DOI: 10.1016/j.theochem.2005.08.046.10.1016/j.theochem.2005.08.046Search in Google Scholar
Uçar, İ., Karabulut, B., Paaoğlu, H., Büyükgüngör, O., & Bulut, A. (2006). X-ray crystal structure and Cu2+ doped EPR studies of tetraaquabis(isonicotinamide)zinc(II) and cobalt(II) disaccharinate 1.5 hydrate single crystals. Journal of Molecular Structure, 787, 38-44. DOI: 10.1016/j.molstruc.2005.10.029.10.1016/j.molstruc.2005.10.029Search in Google Scholar
Uhrecky, R., Padělkova, Z., Moncol, J., Koman, M., Dlhaň, Ľ., Titiš, J., & Boča, R. (2013). Synthesis, crystal structure, spectra and magnetic properties of new manganese(III) and iron(III) dipicolinate complexes. Polyhedron, 56, 9-17. DOI: 10.1016/j.poly.2013.03.026.10.1016/j.poly.2013.03.026Search in Google Scholar
Wu, X. F., Sharif, M., Feng, J. B., Neumann, H., Pews-Davtyan, A., Langer, P., & Beller, M. (2013). A general and practical oxidation of alcohols to primary amides under metal-free conditions. Green Chemistry, 15, 1956-1961. DOI: 10.1039/c3gc40668g. 10.1039/c3gc40668gSearch in Google Scholar
© Institute of Chemistry, Slovak Academy of Sciences