Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Density of lithium fluoride–lithium carbonate-based molten salts

  • Xiao-Wen Song , Wen-Tao Deng , Zheng-Hao Liu , Zhong-Ning Shi EMAIL logo , Bing-Liang Gao , Xian-Wei Hu and Zhao-Wen Wang
From the journal Chemical Papers


The density of the LiF-Li2CO3 melts system was measured using the Archimedean method. Using the quadratic regression orthogonal design with two factors, a regression equation for the density of LiF-Li2CO3 melts was obtained in which the concentration of LiF and temperature were considered. The results indicated that the density of the LiF-Li2CO3 melts decreased with either increasing the concentration of LiF or increasing temperature; a linear relation was observed between density and temperature. In addition, the influences of NaF, KF, NaCl, and KCl additives on the densities of the given systems were studied. The addition of NaF and KF increased the density of the melts, whereas NaCl and KCl resulted in an initial increase and subsequent decrease with an increasing additive concentration. The density attained a maximum at NaCl and KCl mass fraction of approximately 15 %.


Bearne, G., Dupuis, M., & Tarcy, G. (1995). Liquidus temperature and alumina solubility in the system Na3AlF6-AlF3 - LiF-CaF2-MgF2. In A. Solheim, S. Rolseth, E. Skybakmoen, L. Stoen, Å. Sterten, & T. Store (Eds.), Essential readings in light metals: Aluminum reduction technology (Vol. 2, pp.73-82). DOI: 10.1002/9781118647851.ch10.10.1002/9781118647851.ch10Search in Google Scholar

Chrenkova, M., Daněk, V., & Silny, A. (2000). Density of the system LiF-KF-K2NbF7. Chemical Papers, 54, 272-276.Search in Google Scholar

Chrenkova, M., Boča, M., Kucharik, M., & Daněk, V. (2002). Density of melts of the system KF-K2MoO4-SiO2. Chemical Papers, 56, 283-287.Search in Google Scholar

Claes, P., Moyaux, D., & Peeters, D. (1999). Solubility and solvation of carbon dDioxide in the molten Li2CO3/Na2CO3/K2CO3 (43.5:31.5:25.0 mol-%) eutectic mixture at 973 K I.Search in Google Scholar

Experimental part. European Journal of Inorganic Chemistry, 1999, 583-588. DOI: 10.1002/(SICI)1099-0682(199904)1999:4<583::AID-EJIC583>3.0.CO;2-Y.10.1002/(SICI)1099-0682(199904)1999:4<583::AID-EJIC583>3.0.CO;2-YSearch in Google Scholar

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ, USA: Lawrence Erlbaum Associates.Search in Google Scholar

Daněk, V. (2006). Physico-chemical analysis of molten electrolytes. Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Deanhardt, M. L., Stern, K. H., & Kende, A. (1986). Thermal decomposition and reduction of carbonate ion in fluoride melts. Journal of the Electrochemical Society, 133, 1148-1152. DOI: 10.1149/1.2108802.10.1149/1.2108802Search in Google Scholar

Ijije, H. V., Lawrence, R. C., Siambun, N. J., Jeong, S. M., Jewell, D. A., Hu, D., & Chen, G. Z. (2014a). Electro-deposition and re-oxidation of carbon in carbonate containing molten salts. Faraday Discussions, 172, 105-116. DOI: 10.1039/c4fd00046c.10.1039/C4FD00046CSearch in Google Scholar

Ijije, H. V., Sun, C. G., & Chen, G. Z. (2014b). Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties. Carbon, 73, 163-174. DOI: 10.1016/j.carbon.2014. in Google Scholar

Ingram, M. D., Baron, B., & Janz, G. J. (1966). The electrolytic deposition of carbon from fused carbonates. Electrochimica Acta, 11, 1629-1639. DOI: 10.1016/0013-4686(66)80076-2.10.1016/0013-4686(66)80076-2Search in Google Scholar

Kawamura, H., & Ito, Y. (2000). Electrodeposition of cohesive carbon films on aluminum in LiCl-KCl-K2CO3 melt. Journal of Applied Electrochemistry, 30, 571-574. DOI: 10.1023/a:1003927100308.10.1023/A:1003927100308Search in Google Scholar

Kirshenbaum, A. D., Cahill, J. A., McGonigal, P. J., & Grosse, A. V. (1962). The density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides. Journal of Inorganic and Nuclear Chemistry, 24, 1287-1296. DOI: 10.1016/0022-1902(62)80205-x.10.1016/0022-1902(62)80205-XSearch in Google Scholar

Kojima, T., Miyazaki, Y., Nomura, K., & Tanimoto, K. (2008). Density, surface tension, and electrical conductivity of ternary molten carbonate system Li2CO3-Na2CO3-K2CO3 and methods for their estimation. Journal of the Electrochemical Society, 155, F150-F156. DOI: 10.1149/1.2917212.10.1149/1.2917212Search in Google Scholar

Lawrence, R. C. (2013). Carbon from carbon dioxide via molten carbonate electrolysis: Fundamental investigations. PhD Thesis, The University of Nottingham, Nottingham, UK.Search in Google Scholar

Massot, L., Chamelot, P., Bouyer, F., & Taxil, P. (2002). Electrodeposition of carbon films from molten alkaline fluoride media. Electrochimica Acta, 47, 1949-1957. DOI: 10.1016/s0013-4686(02)00047-6.10.1016/S0013-4686(02)00047-6Search in Google Scholar

Silny, A. (1990). Equipment for density measurements of liquids. Advising Technics (Sdělovaci Technika), 38, 101-103.Search in Google Scholar

Song, Q. S., Xu, Q., Wang, Y., Shang, X. J., & Li, Z. Y. (2012). Electrochemical deposition of carbon films on titanium in molten LiCl-KCl-K2CO3. Thin Solid Films, 520, 6856-6863. DOI: 10.1016/j.tsf.2012. in Google Scholar

Van Artsdalen, E. R., & Yaffe, I. S. (1955). Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI. The Journal of Physical Chemistry, 59, 118-127. DOI: 10.1021/j150524a007.10.1021/j150524a007Search in Google Scholar

Yin, H. Y., Mao, X. H., Tang, D. Y., Xiao, W., Xing, L. R., Zhu, H.,Wang, D. H., & Sadoway, D. R. (2013). Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy & Environmental Science, 6, 1538-1545. DOI: 10.1039/c3ee24132g. 10.1039/c3ee24132gSearch in Google Scholar

Received: 2014-10-30
Revised: 2015-1-19
Accepted: 2015-1-20
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 3.6.2023 from
Scroll to top button