Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts

  • Karolina Labus , Katarzyna Szymańska , Jolanta Bryjak EMAIL logo and Andrzej B. Jarzębski
From the journal Chemical Papers


Tyrosinase from Agaricus bisporus was immobilised covalently on mesostructured siliceous foam (MCF) and three mesoporous silicas of SBA-15 type of different pore sizes, regarded as the reference, to reveal that MCF was the superior enzyme support. All the carriers were functionalised using 3-aminopropyltrimethoxysilane and the enzyme was attached covalently via glutaraldehyde or by simple adsorption and it was also cross-linked with glutaraldehyde in selected samples. The experiments indicated that only tyrosinase attached covalently was highly active and that postimmobilisation cross-linking slightly reduced its activity with no improvement in stability. MCFbound tyrosinase was the best biocatalyst with monophenolase and diphenolase activities of 3627 U mL−1 and 53040 U mL−1 of carrier sediment, respectively. Inactivation studies at 55°C showed that MCF-bound tyrosinase was 20 times more stable than the native enzyme, whereas for typical SBA-15 it was only 12 times. A comparative study with other, non-siliceous enzyme supports indicated that aminated MCF appeared to be the carrier of choice for the covalent attachment of tyrosinase.


Ates, S., Cortenlioglu, E., Bayraktar, E., & Mehmetoglu, U. (2007). Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in batch and packed bed reactor. Enzyme and Microbial Technology, 40, 683-687. DOI: 10.1016/j.enzmictec.2006. in Google Scholar

Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2012). Laccase immobilisation on mesostructured silicas. Chemical and Process Engineering, 33, 611-620. DOI: 10.2478/v10176-012-0051-9.10.2478/v10176-012-0051-9Search in Google Scholar

Burton, S. G. (2003). Laccases and phenol oxidases in organic synthesis - a review. Current Organic Chemistry, 7, 1317- 1331. DOI: 10.2174/1385272033486477.10.2174/1385272033486477Search in Google Scholar

Chaudhary, Y. S., Manna, S. K., Mazumdar, S., & Khushalani, D. (2008). Protein encapsulation into mesoporous silica hosts. Microporous and Mesoporous Materials, 109, 535-541. DOI: 10.1016/j.micromeso.2007.06.001. de Faria, R. O., Rotunno Moure, V., de Almeida Amazonas, M. A. L., Krieger, N., & Mitchell, D. A. (2007). The biotechnological potential of mushroom tyrosinases. Food Technology & Biotechnology, 45, 287-294.Search in Google Scholar

Duran, N., Rosa, M. A., D’Annibale, A., & Gianfreda, L. (2002). Applications of laccase and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 31, 907-931. DOI: 10.1016/s0141-0229(02)00214-4.10.1016/S0141-0229(02)00214-4Search in Google Scholar

Espin, J. C., Soler-Rivas, C., Cantos, E., Tomas-Barberan, F. A., & Wichers, H. J. (2001). Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. Journal of Agricultural and Food Chemistry, 49, 1187-1193. DOI: 10.1021/jf001258b.10.1021/jf001258bSearch in Google Scholar PubMed

Franssen, M. C. R., Steunenberg, P., Scott, E. L., Zuilhof, H., & Sanders, J. P. M. (2013). Immobilised enzymes in biorenewables production. Chemical Society Reviews, 42, 6491-6533. DOI: 10.1039/c3cs00004d.10.1039/c3cs00004dSearch in Google Scholar PubMed

Frąckowiak-Wojtasek, B., Gąsowska-Bajger, B., Mazurek, M., Raniszewska, A., Logghe, M., Smolarczyk, R., Cichoń, T., Szala, S., & Wojtasek, H. (2014). Synthesis and analysis of activity of potential anti-melanoma prodrug with a hydrazine linker. European Journal of Medicinal Chemistry, 71, 98-104. DOI: 10.1016/j.ejmech.2013. in Google Scholar PubMed

Garcia-Molina, F., Muñoz, J. L., Garcia-Ruiz, P. A., Rodriguez-Lopez, J. N., Garcia-Canovas, F., Tudela, J., & Varon, R. (2007). A further step in the kinetic characterization of the tyrosinase enzymatic system. Journal of Mathematical Chemistry, 41, 393-406. DOI: 10.1007/s10910-006-9082-0.10.1007/s10910-006-9082-0Search in Google Scholar

Gąsowska, B., Kafarski, P., & Wojtasek, H. (2004). Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols. Biochimica et Biophysica Acta, 1673, 170-177. DOI: 10.1016/j.bbagen.2004. in Google Scholar PubMed

Gouzi, H., & Benmansour, A. (2007). Partial purification and characterization of polyphenol oxidase extracted from Agaricus bisporus (J.E. Lange) Imbach. International Journal of Chemical Reactor Engineering, 5(1). DOI: 10.2202/1542-6580.1445.10.2202/1542-6580.1445Search in Google Scholar

Hudson, S., Cooney, J., & Magner, E. (2008). Proteins in mesoporous silicates. Angewandte Chemie International Edition, 47, 8582-8594. DOI: 10.1002/anie.200705238.10.1002/anie.200705238Search in Google Scholar

Holaouli, S., Asther, M., Sigoillot, J. C., Hamdi, M., & Lomascolo, A. (2006). Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology, 100, 219-232. DOI: 10.1111/j.1365-2672.2006.02866.x.10.1111/j.1365-2672.2006.02866.xSearch in Google Scholar

Ikehata, K., & Nicelli, J. A. (2000). Characterization of tyrosinase for the treatment of aqueous phenols. Bioresource Technology, 74, 191-199. DOI: 10.1016/s0960-8524(00)00025-0.10.1016/S0960-8524(00)00025-0Search in Google Scholar

Jarzębski, A. B., Szymańska, K., Bryjak, J., & Mrowiec-Białoń, J. (2007). Covalent immobilization of trypsin on to siliceous mesostructured cellular foams to obtain effective biocatalysts. Catalysis Today, 124, 2-10. DOI: 10.1016/j.cattod.2007. in Google Scholar

Kampmann, M., Boll, S., Kossuch, J., Bielecki, J., Uhl, S., Kleiner, B., & Wichmann, R. (2014). Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A. Water Resource, 57, 295-303. DOI: 10.1016/j.watres.2014. in Google Scholar

Karim, M. N., Lee, J. E., & Lee, H. J. (2014). Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Biosensors & Bioelectronics, 61, 147-151. DOI: 10.1016/j.bios.2014. in Google Scholar

Labus, K., Turek, A., Liesiene, J., & Bryjak, J. (2011). Efficient Agaricus bisporus tyrosinase immobilization on cellulosebased carriers. Biochemical Engineering Journal, 56, 232-240. DOI: 10.1016/j.bej.2011. in Google Scholar

Lei, C. H., Shin, Y. S., Magnusom, J. K., Fryxell, G., Lasuje, L. L., Elliott, D. C., Liu, J., & Akerman, J. (2006). Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology, 17, 5531-5538. DOI: 10.1088/0957-4484/17/22/001.10.1088/0957-4484/17/22/001Search in Google Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

Min, K. S., Ryu, J. H., & Yoo, Y. J. (2010). Mediator-free glucose/O2 biofuel cell based on a 3-dimenional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnology & Bioprocess Engineering, 15, 371-375. DOI: 10.1007/s12257-009-3034-z.10.1007/s12257-009-3034-zSearch in Google Scholar

Morales, M. D., Morante, S., Escarpa, A., Gonzalez, M. C., Reviejo, A. J., & Pingarron, J. M. (2002). Design of a composite amperometric enzyme electrode for the control of benzoic acid content in food. Talanta, 57, 1189-1198. DOI: 10.1016/s0039-9140(02)00236-9.10.1016/S0039-9140(02)00236-9Search in Google Scholar

Mrowiec-Białoń, J. (2006). Determination of hydroxyls density in the silica mesostructured cellular foams by thermogravimetry. Thermochimica Acta, 443, 49-53. DOI: 10.1016/j.tca.2005. in Google Scholar

Pierre, A. C. (2004). The sol-gel encapsulation of enzymes. Biocatalysis & Biotransformation, 22, 145-170. DOI: 10.1080/10242420412331283314.10.1080/10242420412331283314Search in Google Scholar

Ren, L. W., Jia, H. H., Yu, M., Shen, W. Z., Zhou, H., & Wei, P. (2013). Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases. Biotechnology & Bioprocess Engineering, 18, 888-896. DOI: 10.1007/s12257-013-0044-7.10.1007/s12257-013-0044-7Search in Google Scholar

Rekuć, A., Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2009). Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity. Process Biochemistry, 44, 191-198. DOI: 10.1016/j.procbio.2008. in Google Scholar

Seo, S. Y., Sharma, V. K., & Sharma, N. (2003). Mushroom tyrosinase: Recent prospects. Journal of Agricultural & Food Chemistry, 51, 2837-2853. DOI: 10.1021/jf020826f.10.1021/jf020826fSearch in Google Scholar PubMed

Sigolaeva, L. V., Gladyr, S. Y., Gelissen, A. P., Mergel, O., Pergushov, D. V., Kurochkin, I. N., Plamper, F. A., & Richtering, W. (2014). Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromolecules, 15, 3735-3745. DOI: 10.1021/bm5010349.10.1021/bm5010349Search in Google Scholar PubMed

Szymańska, K., Bryjak, J., & Jarzębski, A. B. (2009). Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Topics in Catalysis, 52, 1030-1036. DOI: 10.1007/s11244-009-9261-x.10.1007/s11244-009-9261-xSearch in Google Scholar

Tembe, S., Karve, M., Inamdar, S., Haram, S., Melo, J., & D’Souza, S. F. (2006). Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Analytical Biochemistry, 349, 72-77. DOI: 10.1016/j.ab.2005. in Google Scholar PubMed

Thalmann, C. R., & Lötzbeyer, T. (2002). Enzymatic crosslinking of proteins with tyrosinase. European Food Research & Technology, 214, 276-281. DOI: 10.1007/s00217-001-0455-0.10.1007/s00217-001-0455-0Search in Google Scholar

Wang, K. H., Lin, R. D., Hsu, F. L., Huang, Y. H., Chang, H. C., Huang, C. Y., & Lee, M. H. (2006). Cosmetic applications of selected traditional Chinese herbal medicines. Journal of Ethnopharmacology, 106, 353-359. DOI: 10.1016/j.jep.2006. in Google Scholar PubMed

Xu, D. Y., Yang, Y., & Yang, Z. (2011). Activity and stability of cross-linked tyrosinase aggregates in aqueous and nonaqueous media. Journal of Biotechnology, 152, 30-36. DOI: 10.1016/j.jbiotec.2011. in Google Scholar PubMed

Xu, D. Y., & Yang, Z. (2013). Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewa ter. Chemosphere, 92, 391-398. DOI: 10.1016/j.chemosphere.2012. in Google Scholar PubMed

Zhao, D. G., Huo, Q. S., Feng, J. L., Chmelka, B. F., & Stucky, G. D. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120, 6024-6036. DOI: 10.1021/ja974025i.10.1021/ja974025iSearch in Google Scholar

Zynek, K., Bryjak, J., & Polakovič, M. (2010). Effect of separation on thermal stability of tyrosinase from Agaricus bisporus. Journal of Molecular Catalysis B: Enzymatic, 66, 172-176. DOI: 10.1016/j.molcatb.2010. in Google Scholar

Zynek, K., Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2011). Screening of porous and cellular materials for covalent immobilization of Agaricus bisporus tyrosinase. Biotechnology and Bioprocess Engineering, 16, 180-189. DOI: 10.1007/s12257-010-0011-5. 10.1007/s12257-010-0011-5Search in Google Scholar

Received: 2014-11-24
Revised: 2015-2-4
Accepted: 2015-2-9
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 9.6.2023 from
Scroll to top button