Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus

  • Ilona Bakai-Bereczki EMAIL logo , Mihály Herczeg , Bernadett György , Lieve Naesens and Pál Herczegh
From the journal Chemical Papers

Abstract

In order to promote attachment of the ristocetin aglycone molecule to the surface of the influenza virus, the aglycone was derivatized with a hemagglutinin ligand sialic acid moiety using a click reaction. The sialoristocetin derivative exhibited somewhat lower anti-influenza virus activity than ristocetin and aglycoristocetin.

References

Bardsley, B., Williams, D. H., & Baglin, T. P. (1998). Cleavage of rhamnose from ristocetin A removes its ability to induce platelet aggregation. Blood Coagulation & Fibrinolysis, 9, 241-244. DOI: 10.1097/00001721-199804000-00004.10.1097/00001721-199804000-00004Search in Google Scholar PubMed

Hasegawa, A., Nakamura, J., & Kiso, M. (1986). Studies on the thioglycosides of N-acetylneuraminic acid 1: Synthesis of alkyl α-glycosides of 2-thio-N-acetylneuraminic acid. Journal of Carbohydrate Chemistry, 5, 11-19. DOI: 10.1080/07328308608082638.10.1080/07328308608082638Search in Google Scholar

Kiefel, M. J., & von Itzstein, M. (2002). Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chemical Reviews, 102, 471-490. DOI: 10.1021/cr000414a.10.1021/cr000414aSearch in Google Scholar PubMed

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004-2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AIDANIE2004>3.0.CO;2-5.Search in Google Scholar

Naesens, L., Vanderlinden, E., Röth, E., Jekö, J., Andrei, G., Snoeck, R., Pannecouque, C., Illyés, E., Batta, G., Herczegh, P., & Sztaricskai, F. (2009). Anti-influenza virus activity and structure-activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains. Antiviral Research, 82, 89-94. DOI: 10.1016/j.antiviral.2009.01.003.10.1016/j.antiviral.2009.01.003Search in Google Scholar PubMed PubMed Central

Pintér, G., Batta, G., Kéki, S., Mándi, A., Komáromi, I., Takács-Novák, K., Sztaricskai, F., Röth, E., Ostorházi, E., Rozgonyi, F., Naesens, L., & Herczegh, P., (2009). Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycone derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. Journal of Medicinal Chemistry, 52, 6053-6061. DOI: 10.1021/jm900950d.10.1021/jm900950dSearch in Google Scholar PubMed

Pintér, G., Bereczki, I., Batta, G., Ötvös, R., Sztaricskai, F., Röth, E., Ostorházi, E., Rozgonyi, F., Naesens, L., Szarvas, M., Boda, Z., & Herczegh, P. (2010). Click reaction synthesis of carbohydrate derivatives from ristocetin aglycone with antibacterial and antiviral activity. Bioorganic & Medicinal Chemistry Letters, 20, 2713-2717. DOI: 10.1016/j.bmcl.2010.03.080.10.1016/j.bmcl.2010.03.080Search in Google Scholar PubMed

Sipos, A., Máté, G., Röth, E., Borbás, A., Batta, G., Bereczki, I., Kéki, S., Jóna, I., Ostorházi, E., Rozgonyi, F., Vanderlinden, E., Naesens, L., & Herczegh, P. (2012). Synthesis of fluorescent ristocetin aglycone derivatives with remarkable antibacterial and antiviral activities. European Journal of Medicinal Chemistry, 58, 361-367. DOI: 10.1016/j.ejmech.2012.10.030.10.1016/j.ejmech.2012.10.030Search in Google Scholar PubMed

Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. Journal of Organic Chemistry, 3, 3057-3064. DOI: 10.1021/jo011148j.10.1021/jo011148jSearch in Google Scholar PubMed

Yang, J., Li, M. M., Shen, X. T., & Liu, S. W. (2013). Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses, 5, 352-373. DOI: 10.3390/v5010352.10.3390/v5010352Search in Google Scholar PubMed PubMed Central

Vanderlinden, E., Vanstreels, E., Boons, E., ter Veer, W., Huckriede, A., Daelemans, D., Van Lommel, A., Roth, E., Sztaricskai, F., Herczegh, P., & Naesens, L. (2012). Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin. Journal of Virology, 86, 9416-9431. DOI: 10.1128/jvi.07032-11.10.1128/JVI.07032-11Search in Google Scholar PubMed PubMed Central

Vanderlinden, E., & Naesens, L. (2014). Emerging antiviral strategies to interfere with influenza virus entry. Medicinal Research Reviews, 34, 301-339. DOI: 10.1002/med.21289.10.1002/med.21289Search in Google Scholar

Wanner, J., Tang, D., McComas, C. C., Crowley, B. M., Jiang, W. L., Moss, J., & Boger, D. L. (2003). A new and improved method for deglycosidation of glycopeptide antibiotics exemplified with vancomycin, ristocetin, and ramoplanin. Bioorganic & Medicinal Chemistry Letters, 13, 1169-1173. DOI: 10.1016/s0960-894x(03)00051-9. 10.1016/S0960-894X(03)00051-9Search in Google Scholar

Received: 2014-9-30
Revised: 2015-2-18
Accepted: 2015-2-18
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 6.6.2023 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0116/html
Scroll to top button