Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples

  • Miroslav Pohanka EMAIL logo
From the journal Chemical Papers


Two cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are known. The enzymes are important in the body and alteration of their activity has significant use in the diagnosis of poisoning, liver function, etc. Currently available methods for the determination of cholinesterases have some major drawbacks including various interferences and the inability to be used for decreasing the enzyme activity in the presence of reversible inhibitors due to sample dilution; hence, a method for dilution free assay of cholinesterases is desired. Here, microplates were modified with indoxylacetate (100 μL of 10 mmol L−1 solution) and used for cholinesterases assay after drying at 37◦C. The fact that indoxylacetate remains stable in dry state and serves simultaneously as a chromogen and substrate provide good prerequisites for the method. The limit of detection for BChE was 0.71 U while that for AChE was 2.8 U per a 100 μL sample (solution of enzyme or plasma sample). The limit of detection is low enough to allow standard examination of cholinesterasemia. The two cholinesterases can be distinguished from each other using selective inhibitors such as donepezil and iso-OMPA. The new method was also successfully validated for the standard Ellman’s assay using plasma samples with BChE activity adjusted by carbofuran. The new method based on indoxylacetate seems promising for routine tests.


Bazire, A., Gillon, E., Lockridge, O., Vallet, V., & Nachon, F. (2011). The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate. Toxicology in Vitro, 25, 754-759. DOI: 10.1016/j.tiv.2011. in Google Scholar

Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondzić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11, 315-335. DOI: 10.2174/1570159x11311030006.10.2174/1570159X11311030006Search in Google Scholar

Darreh-Shori, T., & Soininen, H. (2010). Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Current Alzheimer Research, 7, 67-73. DOI: 10.2174/156720510790274455. de Melo, J. S., Rondão, R., Burrows, H. D., Melo, M. J., Navaratnam, S., Edge, R., & Voss, G. (2006). Photophysics of an indigo derivative (keto and leuco structures) with singular properties. The Journal of Physical Chemistry A, 110, 13653-13661. DOI: 10.1021/jp057451w.10.1021/jp057451wSearch in Google Scholar

Duysen, E. G., & Lockridge, O. (2011). Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: a model for butyrylcholinesterase-deficient humans. Drug Metabolism & Disposition, 39, 1321-1323. DOI: 10.1124/dmd.111.039917.10.1124/dmd.111.039917Search in Google Scholar

Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95. DOI: 10.1016/0006-2952(61)90145-9.10.1016/0006-2952(61)90145-9Search in Google Scholar

Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., & Reiner, E. (2003). Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry, 312, 224-227. DOI: 10.1016/s0003-2697(02)00506-7.10.1016/S0003-2697(02)00506-7Search in Google Scholar

George, P. M., & Abernethy, M. H. (1983). Improved Ellman procedure for erythrocyte cholinesterase. Clinical Chemistry, 29, 365-368.10.1093/clinchem/29.2.365Search in Google Scholar

GhattyVenkataKrishna, P. K., Chavali, N., & Uberbacher, E. C. (2013). Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase. Chemical Papers, 67, 677-681. DOI: 10.2478/s11696-013-0354-4.10.2478/s11696-013-0354-4Search in Google Scholar

Giustarini, D., Dalle-Donne, I., Milzani, A., Fanti, P., & Rossi, R. (2013). Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nature Protocols, 8, 1660-1669. DOI: 10.1038/nprot.2013.095.10.1038/nprot.2013.095Search in Google Scholar

Gorun, V., Proinov, I., Băltescu, V., Balaban, G., & Bârzu, O. (1978). Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations. Analytical Biochemistry, 86, 324-326. DOI: 10.1016/0003-2697(78)90350-0.10.1016/0003-2697(78)90350-0Search in Google Scholar

Guemei, A. A., Cottrell, J., Band, R., Hehman, H., Prudhomme, M., Pavlov, M. V., Grem, J. L., Ismail, A. S., Bowen, D., Taylor, R. E., & Takimoto, C. H. (2001). Human plasma carboxylesterase and butyrylcholinesterase enzyme activity: correlations with SN-38 pharmacokinetics during a prolonged infusion of irinotecan. Cancer Chemotherapy and Pharmacology, 47, 283-290. DOI: 10.1007/s002800000258.10.1007/s002800000258Search in Google Scholar PubMed

Harel, M., Sussman, J. L., Krejci, E., Bon, S., Chanal, P., Massoulie, J., & Silman, I. (1992). Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 89, 10827-10831. DOI: 10.1073/pnas.89.22.10827.10.1073/pnas.89.22.10827Search in Google Scholar PubMed PubMed Central

Iwasaki, T., Yoneda, M., Nakajima, A., & Terauchi, Y. (2007). Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Internal Medicine, 46, 1633-1639. DOI: 10.2169/internalmedicine.46.0049.10.2169/internalmedicine.46.0049Search in Google Scholar PubMed

Kemkes-Matthes, B., Preissner, K. T., Langenscheidt, F., Matthes, K. J., & Müller-Berghaus, G. (1987). S protein/vitronectin in chronic liver diseases: correlations with serum cholinesterase, coagulation factor X and complement component C3. European Journal of Haematology, 39, 161-165. DOI: 10.1111/j.1600-0609.1987.tb00747.x.10.1111/j.1600-0609.1987.tb00747.xSearch in Google Scholar PubMed

Khaled, E., Hassan, H. N. A., Mohamed, G. G., Ragab, F. A., & Seleim, A. E. A. (2010). Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta, 83, 357-363. DOI: 10.1016/j.talanta.2010. in Google Scholar PubMed

Lejus, C., Delaroche, O., Trille, E., Blanloeil, Y., & Pinaud, M. (2006). Butyrylcholinesterase deficiency: how to analyse the cholinesterase activity in small children? Annales Fran¸caises d’Anesthésie et de Réanimation, 25, 657-660. DOI: 10.1016/j.annfar.2006. in Google Scholar PubMed

Pohanka, M. (2011). Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers Olomouc, 155, 219-229. DOI: 10.5507/bp.2011.036.10.5507/bp.2011.036Search in Google Scholar PubMed

Pohanka, M. (2012a). Acetylcholinesterase inhibitors: a patent review (2008 - present). Expert Opinion on Therapeutic Patents, 22, 871-886. DOI: 10.1517/13543776.2012.701620.10.1517/13543776.2012.701620Search in Google Scholar PubMed

Pohanka, M. (2012b). Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Analytical Letters, 45, 367-374. DOI: 10.1080/00032719.2011.644743.10.1080/00032719.2011.644743Search in Google Scholar

Pohanka, M. (2013a). Cholinesterases in biorecognition and biosensor construction: A review. Analytical Letters, 46, 1849-1868. DOI: 10.1080/00032719.2013.780240.10.1080/00032719.2013.780240Search in Google Scholar

Pohanka, M. (2013b). Butyrylcholinesterase as a biochemical marker, a review. Bratislava Medical Journal, 114, 726-734. DOI: 10.4149/bll 2013 153.Search in Google Scholar

Pohanka, M. (2014). Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the stan dard spectrophotometric test. Talanta, 119, 412-416. DOI: 10.1016/j.talanta.2013. in Google Scholar PubMed

Pohanka, M. (2015). Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, 69, 4-16. DOI: 10.2478/s11696-014-0542-x.10.2478/s11696-014-0542-xSearch in Google Scholar

Prellwitz, W., Kapp, S., & Müller, D. (1976). Comparative methods for the determination of the activity of serumcholinesterases (acylcholin-acyl-hydrolase E.C. and their diagnostical value. Journal of Clinical Chemistry and Clinical Biochemistry, 14, 93-97. DOI: 10.1515/cclm.1976.14.1- in Google Scholar

Prokofieva, D. S., Jenkins, R. O., & Goncharov, N. V. (2012). Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results. Analytical Biochemistry, 424, 108-113. DOI: 10.1016/j.ab.2012. in Google Scholar PubMed

Rastogi, S. K., Singh, V. K., Kesavachandran, C., Jyoti, Siddiqui, M. K. J., Mathur, N., & Bharti, R. S. (2008). Monitoring of plasma butyrylcholinesterase activity and hematological parameters in pesticide sprayers. Indian Journal of Occupational & Environmental Medicine, 12, 29-32. DOI: 10.4103/0019-5278.40813.10.4103/0019-5278.40813Search in Google Scholar PubMed PubMed Central

Sochocka, M., Zaczyńska, E., Leszek, J., Siemieniec, W., & Błach-Olszewska, Z. (2008). Effect of donepezil on innate antiviral immunity of human leukocytes. Journal of the Neurological Sciences, 273, 75-80. DOI: 10.1016/j.jns.2008. in Google Scholar PubMed

Villatte, F., Bachman, T. T., Hussein, A. S., & Schmid, R. D. (2001). Acetylcholinesterase assay for rapid expression screening in liquid and solid media. BioTechniques, 30, 81-86. 10.2144/01301st04Search in Google Scholar PubMed

Received: 2015-1-18
Revised: 2015-2-24
Accepted: 2015-2-27
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 6.6.2023 from
Scroll to top button