Accessible Unlicensed Requires Authentication Published by De Gruyter January 22, 2016

Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements

Marco Bortoluzzi, Dario Battistel, Gabriele Albertin, Salvatore Daniele, Francesco Enrichi and Riccardo Rumonato
From the journal Chemical Papers

1,10-Phenanthroline-5,6-dione (Phd) complexes of group 3 and lanthanide elements having formulae Ln(hfac)3 (Phd) (Ln = Y, Eu, Yb; hfac = hexafluoroacetylacetonate) were synthesised and characterised. Complexes of d-block elements of the type [MCl(Phd)(p-cymene)]+ (M = Ru, Os) were also prepared. In all these species, coordination of the polydentate ligand occurs by the N-donor moieties, as indicated by DFT calculations. The novel compounds were tested, together with fac-ReBr(Phd)(CO)3, as precursors for the preparation of heterobimetallic d/f derivatives. The reaction of the rhenium complex with yttrium or lanthanide anhydrous triflate salts led to the formation of the complexes ReBr(CO)3 (N,N′-Phd-O,O′)Ln(OTf)3(THF) (Ln = Y, Eu, Yb), where the trivalent ions interacted with the quinonoid moiety. The redox properties of the rhenium centre were strongly affected by the coordination of Ln(OTf)3, as observed by comparing the cyclic voltammetry measurements carried out on fac-ReBr(Phd)(CO)3 and on ReBr(CO)3 (N,N′-Phd-O,O′)Y(OTf)3.


The financial support received from Ca’ Foscari University of Venice is gratefully acknowledged (Progetti di Ateneo 2014).

Supplementary data

Supplementary data (the Cartesian coordinates of IIIY, IIIEu and IIIYb) associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2015-0140).


Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). New York, NY, USA: Wiley. Search in Google Scholar

Bennett, M. A., Huang, T. N., Matheson, T. W., Smith, A. K., Ittel, S., & Nickerson, W. (1982). (η6-Hexamethylbenzene)ruthenium complexes. In J. P. Fackler (Ed.), Inorganic syntheses (Vol. 21, Chapter 16, pp. 74–78). Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470132524.ch16. Search in Google Scholar

Bertolo, L., Tamburini, S., Vigato, P. A., Porzio, W., Macchi, G., & Meinardi, F. (2006). Tris(tropolonato)phenanthroline lanthanide(III) complexes as photochemical devices. European Journal of Inorganic Chemistry, 2006, 2370–2376. DOI: 10.1002/ejic.200501061. Search in Google Scholar

Brechin, E. K., Calucci, L., Englert, U., Margheriti, L., Pampaloni, G., Pinzino, C., & Prescimone, A. (2008). 1,10Phenanthroline-5,6-dione complexes of middle transition elements: Monoand dinuclear derivatives. Inorganica Chimica Acta, 361, 2375–2384. DOI: 10.1016/j.ica.2007.12.011. Search in Google Scholar

Bullock, J. P., Carter, E., Johnson, R., Kennedy, A. T., Key, S. E., Kraft, B. J., Saxon, D., & Underwood, P. (2008). Reactivity of electrochemically generated rhenium (II) tricarbonyl αdiimine complexes: A reinvestigation of the oxidation of luminescent Re(CO)3(α-diimine)Cl and related compounds. Inorganic Chemistry, 47, 7880–7887. DOI: 10.1021/ic800530n. Search in Google Scholar

Bünzli, J. C. G., & Eliseeva, S. V. (2011). Basics of lanthanide photophysics. In P. Hänninen, & H. Härmä (Eds.), Lanthanide luminescence: Photophysical, analytical and biological aspects (Springer series on fluorescence, Vol. 7, pp. 1–45). Berlin, Germany: Springer. DOI: 10.1007/4243_2010_3. Search in Google Scholar

Cabeza, J. A., & Maitlis, P. M. (1985). Mononuclear η6-p-cymeneosmium(II) complexes and their reactions with Al2Me6and other methylating reagents. Journal of the Chemical Society, Dalton Transactions, 1985, 573–578. DOI: 10.1039/dt9850000573. Search in Google Scholar

Calderazzo, F., Marchetti, F., Pampaloni, G., & Passarelli, V. (1999). Co-ordination properties of 1,10-phenanthroline-5,6dione towards group 4 and 5 metals in low and high oxidation states. Journal of the Chemical Society, Dalton Transactions, 1999, 4389–4396. DOI: 10.1039/a906016b. Search in Google Scholar

Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models (2nd ed.). Chichester, UK: Wiley. Search in Google Scholar

Daniele, S., Baldo, M. A., Bragato, C., Denuault, G., & Abdelsalam, M. E. (1999). Steady-state voltammetry for hydroxide ion oxidation in aqueous solutions in the absence of and with varying concentrations of supporting electrolyte. Analytical Chemistry, 71, 811–818. DOI: 10.1021/ac9807619. Search in Google Scholar

Daniele, S., & Bragato, C. (2014). From macroelectrodes to microelectrodes: Theory and electrode properties. In L. M. Moretto, & K. Kalcher (Eds.), Environmental analysis by electrochemical sensors and biosensors (Series: Nanostructure science and technology, Vol. 1, pp. 373–402). Heidelberg, Germany: Springer. Search in Google Scholar

Denisova, A. S., Degtyareva, M. B., Dem’yanchuk, E. M., & Simanova, A. A. (2005). Synthesis of bifunctional ligands based on azaheterocycles and fragments of 12-crown-4. Russian Journal of Organic Chemistry, 41, 1690–1693. DOI: 10.1007/s11178-006-0020-1. Search in Google Scholar

Dolg, M., Stoll, H., Savin, A., & Preuss, H. (1989). Energyadjusted pseudopotentials for the rare earth elements. Theoretica Chimica Acta, 75, 173–194. DOI: 10.1007/bf00528565. Search in Google Scholar

Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (NIC series, Vol. 1, pp. 479–508). Jülich, Germany: John von Neumann Institute for Computing. Search in Google Scholar

Eckert, T. S., Bruice, T. C., Gainor, J. A., & Weinreb, S. M. (1982). Some electrochemical and chemical properties of methoxatin and analogous quinoquinones. Proceedings of the National Academy of Sciences of the USA, 79, 2533–2536. Search in Google Scholar

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448975. Search in Google Scholar

Hehre, W. J., Ditchfiled, R., & Pople, J. A. (1972). Self– consistent molecular orbital methods. XII. Further extensions of Gaussian–type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261. DOI: 10.1063/1.1677527. Search in Google Scholar

Kobayashi, S., Sugiura, M., Kitagawa, H., & Lam, W. W. L. (2002). Rare-earth metal trifiates in organic synthesis. Chemical Reviews, 102, 2227–2302. DOI: 10.1021/cr010289i. Search in Google Scholar

Kropacheva, T. N., Kornev, V. I., Loginov, D. A., Meshcheryakov, V. I., Mutseneck, E. V., Muratov, D. V., Perekalin, D. S., Shul’pina, L. S., & Kudinov, A. R. (2005). Synthesis and studies of spectroscopic and electrochemical properties of dinuclear ruthenium(II) and manganese(II) complexes. Russian Chemical Bulletin, International Edition, 54, 2354– 2358. DOI: 10.1007/s11172-006-0122-5. Search in Google Scholar

Kurz, P., Probst, B., Spingler, B., & Alberto, R. (2006). Ligand variations in [ReX(diimine)(CO)3] complexes: Effects on photocatalytic CO2reduction. European Journal of Inorganic Chemistry, 2006, 2966–2974. DOI: 10.1002/ejic.200600166. Search in Google Scholar

Lever, A. B. P. (1991). Electrochemical parametrization of rhenium redox couples. Inorganic Chemistry, 30, 1980–1985. DOI: 10.1021/ic00009a008. Search in Google Scholar

Lin, C. Y., George, M. W., & Gill, P. M. W. (2004). EDF2: A density functional for predicting molecular vibrational frequencies. Australian Journal of Chemistry, 57, 365–370. DOI: 10.1071/ch03263. Search in Google Scholar

Richardson, M. F., Wagner, W. F., & Sands, D. E. (1968). Rareearth trishexafiuoroacetylacetonates and related compounds. Journal of Inorganic and Nuclear Chemistry, 30, 1275–1289. DOI: 10.1016/0022-1902(68)80557-3. Search in Google Scholar

Richter, M. M., & Bard, A. J. (1996). Electrogenerated chemiluminescence. 58. Ligand-sensitized electrogenerated chemiluminescence in europium labels. Analytical Chemistry, 68, 2641–2650. DOI: 10.1021/ac960211f. Search in Google Scholar

Schmidt, S. P., Trogler, W. C., Basolo, F., Urbancic, M. A., & Shapley, J. R. (1990). Pentacarbonylrhenium halides. In R. J. Angelici (Ed.), Inorganic syntheses: Reagents for transition metal complex and organometallic syntheses (Vol. 28, Chapter 42, pp. 165–168). Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470132593.ch42. Search in Google Scholar

Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S., & Ward, M. D. (2003). Sensitized nearinfrared emission from complexes of YbIII, NdIII and ErIII by energy-transfer from covalently attached PtII-based antenna units. Chemistry – A European Journal, 9, 5283–5291. DOI: 10.1002/chem.200305132. Search in Google Scholar

Wuyts, L. F., & Van Der Kelen, G. P. (1977). Carbonyl spectra of L2XMn(CO)3complexes. Inorganica Chimica Acta, 23, 19–22. DOI: 10.1016/s0020-1693(00)94735-2. Search in Google Scholar

Zhang, X. F., Xu, C. J., & Wan, J. (2014). Monoand dinuclear europium(III) complexes with thenoyltrifiuoroacetone and 1,10-phenanthroline-5,6-dione. Monatshefte für Chemie, 145, 1913–1917. DOI: 10.1007/s00706-014-1282-x. Search in Google Scholar

Zobi, F., Degonda, A., Schaub, M. C., & Bogdanova, A. Y. (2010). CO releasing properties and cytoprotective effect of cis-trans-[ReII(CO)2Br2L2]ncomplexes. Inorganic Chemistry, 49, 7313–7322. DOI: 10.1021/ic100458j. Search in Google Scholar

Received: 2015-3-3
Revised: 2015-4-8
Accepted: 2015-4-8
Published Online: 2016-1-22
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences