Accessible Unlicensed Requires Authentication Published by De Gruyter September 1, 2015

Driving force and activation energy in air-gap membrane distillation process

Joanna Kujawa and Wojciech Kujawski
From the journal Chemical Papers


The present study investigated the impact of the driving force (Δp) on the transport properties. All the experiments and calculations were performed for air-gap membrane distillation (AGMD). In the course of the experiments, it was found that an identical value of Δp could be attained by applying different values of feed and permeate temperatures. It was highlighted that constant values of water fluxes could be achieved using the constant driving force created by different temperatures. Moreover, the relation between ln(JH₂O) and 1/Tf was shown to be linear only for the JH₂O created at ΔT = Tf - Tp > 35 K. This work’s significant finding was to highlight the limitation of the Arrhenius-type equation applied in the activation energy calculations.


Alkhudhiri, A., Darwish, N., & Hilal, N. (2013). Produced water treatment: Application of Air gap membrane distillation. Desalination, 309, 46-51. DOI: 10.1016/j.desal.2012.09.017. Search in Google Scholar

Arrhenius, S. A. (1889). Über die Dissociationswarme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Leipzig, Germany: Wilhelm Engelman. (in German) Baranowski, B. (1991). Non-equilibrium thermodynamics as applied to membrane transport. Journal of Membrane Science, 57, 119-159. DOI: 10.1016/s0376-7388(00)80675-4. El-Bourawi, M. S., Ding, Z., Ma, R., & Khayet, M. (2006). A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 285, 4-29. DOI: 10.1016/j.memsci.2006.08.002. Search in Google Scholar

Francis, L., Ghaffour, N., Alsaadi, A. A., & Amy, G. L. (2013). Material gap membrane distillation: A new design for water vapor flux enhancement. Journal of Membrane Science, 448, 240-247. DOI: 10.1016/j.memsci.2013.08.013. Search in Google Scholar

Godino, M. P., Barragan, V. M., Izquierdo, M. A., Villaluenga, J. P. G., Seoane, B., & Ruiz-Bauza, C. (2009). Study of the activation energy for transport of water and methanol through a Nafion membrane. Chemical Engineering Journal, 152, 20-25. DOI: 10.1016/j.cej.2009.03.022. Search in Google Scholar

Gryta, M. (2005). Osmotic MD and other membrane distillation variants. Journal of Membrane Science, 246, 145-156. DOI: 10.1016/j.memsci.2004.07.029. Search in Google Scholar

Imdakm, A. O., & Matsuura, T. (2005). Simulation of heat and mass transfer in direct contact membrane distillation (MD): The effect of membrane physical properties. Journal of Membrane Science, 262, 117-128. DOI: 10.1016/j.memsci.2005.05.026. Search in Google Scholar

Jönsson, A. S., Wimmerstedt, R., & Harrysson, A. C. (1985). Membrane distillation - a theoretical study of evaporation through microporous membranes. Desalination, 56, 237-249. DOI: 10.1016/0011-9164(85)85028-1. Search in Google Scholar

Kast, W., & Hohenthanner, C. R. (2000). Mass transfer within the gas-phase of porous media. International Journal of Heat and Mass Transfer, 43, 807-823. DOI: 10.1016/s0017-9310(99)00158-1. Search in Google Scholar

Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and Interface Science, 164, 56-88. DOI: 10.1016/j.cis.2010.09.005. Search in Google Scholar

Khayet, M., & Matsuura, T. (2011). Membrane distillation: Principles and applications. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

Kimura, S., Nakao, S. I., & Shimatani, S. I. (1987). Transport phenomena in membrane distillation. Journal of Membrane Science, 33, 285-298. DOI: 10.1016/s0376-7388(00)80286-0. Search in Google Scholar

Kujawa, J., Kujawski, W., Koter, S., Jarzynka, K., Rozicka, A., Bajda, K., Cerneaux, S., Persin, M., & Larbot, A. (2013). Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes. Desalination and Water Treatment, 51, 1352-1361. DOI: 10.1080/19443994.2012.704976. Search in Google Scholar

Kujawa, J., Cerneaux, S., Koter, S., & Kujawski, W. (2014). Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Applied Materials & Interfaces, 6, 14223-14230. DOI: 10.1021/am5035297. Search in Google Scholar

Kujawski, W., Krajewska, S., Kujawski, M., Gazagnes, L., Larbot, A., & Persin, M. (2007). Pervaporation properties of fluoroalkylsilane (FAS) grafted ceramic membranes. Desalination, 205, 75-86. DOI: 10.1016/j.desal.2006.04.042. Search in Google Scholar

Kujawski, W., Sobolewska, A., Jarzynka, K., Güell, C., Ferrando, M., & Warczok, J. (2013). Application of osmotic membrane distillation process in red grape juice concentration. Journal of Food Engineering, 116, 801-808. DOI: 10.1016/j.jfoodeng.2013.01.033. Search in Google Scholar

Laganà, F., Barbieri, G., & Drioli, E. (2000). Direct contact membrane distillation: Modelling and concentration experiments. Journal of Membrane Science, 166, 1-11. DOI: 10.1016/s0376-7388(99)00234-3. Search in Google Scholar

Lawson, K. W., & Lloyd, D. R. (1997). Membrane distillation. Journal of Membrane Science, 124, 1-25. DOI: 10.1016/s0376-7388(96)00236-0. Search in Google Scholar

Martinez-Diez, L., & Tejerina-Garcia, A. F. (1986). Diffusion of MgCl2 through nuclepore membranes of polycarbonate. Il Nuovo Cimento D, 7, 771-780. DOI: 10.1007/bf02453437. Search in Google Scholar

Petrychkovych, R., Setnickova, K., & Uchytil, P. (2013). The influence of water on butanol isomers pervaporation transport through polyethylene membrane. Separation and Purification Technology, 107, 85-90. DOI: 10.1016/j.seppur.2013.01. 014. Search in Google Scholar

Phattaranawik, J., Jiraratananon, R., & Fane, A. G. (2003). Heat transport and membrane distillation coefficients in direct contact membrane distillation. Journal of Membrane Science, 212, 177-193. DOI: 10.1016/s0376-7388(02)00498-2. Search in Google Scholar

Sartorius (2015). Polytetrafluorethylene (PTFE) membrane filter 11806-47-N. Retrieved on February 2015 from http:// Sha, S., Kong, Y., & Yang, J. R. (2012). The pervaporation performance of C60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: Effect of operating temperature. Energy & Fuels, 26, 6925-6929. DOI: 10.1021/ef300986n. Search in Google Scholar

Shirazi, M. M. A., Kargari, A., Tabatabaei, M., Ismail, A. F., & Matsuura, T. (2014). Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation. Chemical Engineering and Processing: Process Intensification, 78, 58-66. DOI: 10.1016/j.cep.2014.02.002. Search in Google Scholar

Varghese, J. G., Karuppannan, R. S., & Kariduraganavar, M. Y. (2010). Development of hybrid membranes using chitosan and silica precursors for pervaporation separation of water + isopropanol mixtures. Journal of Chemical & Engineering Data, 55, 2084-2092. DOI: 10.1021/je9003993. Search in Google Scholar

Wynne-Jones, W. F. K., & Eyring, H. (1935). The absolute rate of reactions in condensed phases. The Journal of Chemical Physics, 3, 492-502. DOI: 10.1063/1.1749713. Search in Google Scholar

Zemansky, M.W. (1968). Heat and thermodynamics. New York, NY, USA: McGraw Hill. Search in Google Scholar

Received: 2015-2-19
Revised: 2015-4-16
Accepted: 2015-5-15
Published Online: 2015-9-1
Published in Print: 2015-9-1

© Institute of Chemistry, Slovak Academy of Sciences