Accessible Unlicensed Requires Authentication Published by De Gruyter September 1, 2015

Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge

Stanisław Wacławek, Klaudiusz Grübel, Zuzanna Chłąd and Mariusz Dudziak
From the journal Chemical Papers

Abstract

In the study, a thermally activated sodium peroxydisulphate (PDS; Na2S2O8) was applied in order to disintegrate wastewater activated sludge (WAS). Chemical disintegration of WAS results in organic matter and polymer transfer from the solid phase to the liquid phase. Soluble chemical oxygen demand (SCOD) is often used to characterise the disintegration efficiency of WAS flocs and microorganisms cells. The present study was conducted in order to chemically disintegrate WAS using PDS in doses of 0.2 %, 0.4 %, 0.6 %, 0.8 % and 1.0 % activated at temperatures of 50°C, 70°C and 90°C for 30 min. The temperature rise induced the PDS to form free radicals, which resulted in an increase in SCOD, i.e. for the highest dose of PDS, the SCOD value attained 2140 mg dm−3 (almost a 15-fold increase over the WAS value). A further positive effect from using this method was a decrease in the sludge volume index (SVI) from 89.8 cm3 g−1 to 30.6 cm3 g−1. On the basis of the results obtained, it may be concluded that thermally activated PDS is suitable for disintegration and has a positive impact on WAS sedimentation properties.

References

Abelleira, J., Pérez-Elvira, S. I., Sánchez-Oneto, J., Portela, J. R., & Nebot, E. (2012). Advanced thermal hydrolysis of secondary sewage sludge: A novel process combining thermal hydrolysis and hydrogen peroxide addition. Resources, Conservation and Recycling, 59, 52-57. DOI: 10.1016/j.resconrec.2011.03.008. Search in Google Scholar

Ahmad, M., Teel, A. L., & Watts, R. J. (2013). Mechanism of persulfate activation by phenols. Environmental Science & Technology, 47, 5864-5871. DOI: 10.1021/es400728c. Search in Google Scholar

Block, P. A., Brown, R. A., & Robinson, D. (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. In Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, May 24-27, 2004 (Paper 2A-05). Monterrey, Mexico: Battelle Press. Search in Google Scholar

Bougrier, C., Albasi, C., Delgen`es, J. P., & Carr`ere, H. (2006). Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing: Process Intensification, 45, 711-718. DOI: 10.1016/j.cep.2006.02.005. Search in Google Scholar

Bougrier, C., Delgen`es, J. P., & Carr`ere, H. (2008). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion.Chemical Engineering Journal, 139, 236-244. DOI: 10.1016/j.cej.2007.07.099. Search in Google Scholar

Braguglia, C. M., Gianico, A., & Mininni, G. (2011). Laboratory- scale ultrasound pre-treated digestion of sludge: heat and energy balance. Bioresource Technology, 102, 7567-7573.DOI: 10.1016/j.biortech.2011.05.025. Search in Google Scholar

Burgess, J. E., & Platschke, B. I. (2008). Hydrolytic enzymes in sewage sludge treatment: A mini-review. Water SA, 34, 343-349. Search in Google Scholar

Cabirol, N., Barragán, E. J., Durán, A., & Noyola, A. (2003).Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment. Water Science and Technology, 48, 235-240. Search in Google Scholar

Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183, 1-15. DOI: 10.1016/j.jhazmat.2010.06.129. Search in Google Scholar

Cloete, T. E., & Oosthuizen, D. J. (2001). The role of extracellular exopolymers in the removal of phosphorous from activated sludge. Water Research, 35, 3595-3598. DOI: 10.1016/s0043-1354(01)00093-8. Search in Google Scholar

Eskicioglu, C., Kennedy, K. J., & Droste, R. L. (2006). Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environment Research, 79, 2304-2317. DOI: 10.2175/106143007x184069. Search in Google Scholar

Esparza-Soto, M., &Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 37, 2301-2310. DOI: 10.1016/s0043-1354(02)00630-9. Search in Google Scholar

Fang, G. D., Gao, J., Dionysiou, D. D., Liu, C., & Zhou, D.M. (2013). Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs.Environmental Science & Technology, 47, 4605-4611. DOI: 10.1021/es400262n. Search in Google Scholar

Gray, N. F. (2004). Biology of wastewater treatment (Vol. 4, 2nd ed.). London, UK: Imperial College Press. Search in Google Scholar

Grübel, K., & Suschka, J. (2015). Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process. Environmental Science and Pollution Research, 22, 7258-7270. DOI: 10.1007/s11356-014-3705-y. Search in Google Scholar

Guan, B. H., Yu, J., Fu, H. L., Guo, M. H., & Xu, X. H. (2012). Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution. Water Research, 46, 425-432. DOI: 10.1016/j.watres.2011.11.014. Search in Google Scholar

Guellil, A., Thomas, F., Block, J. C., Bersillon, J. L., & Ginestet, P. (2001). Transfer of organic matter between wastewater and activated sludge flocs. Water Research, 35, 143-150. DOI: 10.1016/s0043-1354(00)00240-2. Search in Google Scholar

Hiraoka, M., Takeda, N., Sakai, S., & Yasuda, A. (1984). Highly efficient anaerobic digestion with thermal pretreatment. Water Science and Technology, 17, 529-539. Search in Google Scholar

Huang, K. C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49, 413-420. DOI: 10.1016/s0045-6535(02)00330-2. Search in Google Scholar

Houdková, L., Borán, J., Ucekaj, V., Elsäßer, T., & Stehlík, P. (2008). Thermal processing of sewage sludge - II. Applied Thermal Engineering, 28, 2083-2088. DOI: 10.1016/j. applthermaleng.2008.04.005. Search in Google Scholar

Jenkins, D., Richard, M. G., & Daigger, G. T. (1993). Manual on the causes and control of activated sludge bulking and foaming (2nd ed.). Fort Worth, TX, USA: Lewis Publishers. Search in Google Scholar

Kennedy, K. J., Thibault, G., & Droste, R. L. (2007). Microwave enhanced digestion of aerobic SBR sludge. Water SA, 33, 261-270. Search in Google Scholar

Kjellerup, B. V., Keiding, K., & Nielsen, P. H. (2001). Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant. Water Science and Technology, 44, 155-162. Search in Google Scholar

Latimer, W. M. (1952). Oxidation potentials (2nd ed.). Englewood Cliffs, NJ, USA: Prentice-Hall. Search in Google Scholar

Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004). Persulfate oxidation for in situ remediation of TCE.I. Activated by ferrous ion with and without a persulfate- thiosulfate redox couple. Chemosphere, 55, 1213-1223. DOI: 10.1016/j.chemosphere.2004.01.029. Search in Google Scholar

Liang, C. J., & Guo, Y. Y. (2012). Remediation of dieselcontaminated soils using persulfate under alkaline condition.Water Air & Soil Pollution, 223, 4605-4614. DOI: 10.1007/s11270-012-1221-6. Search in Google Scholar

Liu, X.,Wang,W., Gao, X. B., Zhou, Y. J., & Shen, R. J. (2012).Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management, 32, 249-255. DOI: 10.1016/j.wasman.2011.09.027. Search in Google Scholar

Neyens, E., Baeyens, J.,Weemaes, M., & De Heyder, B. (2003a).Hot acid hydrolysis as a potential treatment of thickened sewage sludge. Journal of Hazardous Materials, 98, 275-293.DOI: 10.1016/s0304-3894(03)00002-5. Search in Google Scholar

Neyens, E., Baeyens, J., & Creemers, C. (2003b). Alkaline thermal sludge hydrolysis. Journal of Hazardous Materials, 97, 295-314. DOI: 10.1016/s0304-3894(02)00286-8. Search in Google Scholar

Oncu, N. B., & Balcioglu, I. A. (2013). Microwave-assisted chemical oxidation of biological waste sludge: Simultaneous micropollutant degradation and sludge solubilization.Bioresource Technology, 146, 126-134. DOI: 10.1016/j. biortech.2013.07.043. Search in Google Scholar

Peeters, B., Vernimmen, L., & Meeusen, W. (2009). Lab protocol for a spin tube test, simulating centrifugal compaction of activated sludge. Filtration, 9, 205-217. Search in Google Scholar

Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012).Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC, USA: American Public Health Association. Search in Google Scholar

Romero, A., Santos, A., Vicente, F., & González, C. (2010).Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal, 162, 257-265. DOI: 10.1016/j.cej.2010.05.044. Search in Google Scholar

Sanin, F. D., Clarkson, W. W., & Vesilind, P. A. (2011). Sludge engineering: the treatment and disposal of wastewater sludges (1st ed.). Lancaster, PA, USA: DEStech Publications. Search in Google Scholar

Sezgin, M. (1982). Variation of sludge volume index with activated sludge characteristics. Water Research, 16, 83-88.DOI: 10.1016/0043-1354(82)90056-2. Search in Google Scholar

Siegrist, R. L., Crimi, M., & Simpkin, T. J. (2011). In situ chemical oxidation for groundwater remediation. New York, NY, USA: Springer. Search in Google Scholar

Stasta, P., Boran, J., Bebar, L., Stehlik, P., & Oral, J. (2006). Thermal processing of sewage sludge. Applied Thermal Engineering, 26, 1420-1426. DOI: 10.1016/j.applthermaleng.2005.05.030. Search in Google Scholar

Sun, D. D., Liang, H. M., & Ma, C. (2012). Enhancement of sewage sludge anaerobic digestibility by sulfate radical pretreatment. Advanced Materials Research, 518-523, 3358-3362. DOI: 10.4028/www.scientific.net/amr.518-523.3358. Search in Google Scholar

Wang, F., Lu, S. H., & Ji, M. (2006). Components of release liquid from ultrasonic waste activated sludge disintegration. Ultrasonics Sonochemistry, 13, 334-338. DOI: 10.1016/j.ultsonch.2005.04.008. Search in Google Scholar

Wei, C. H., Wang, W. X., Deng, Z. Y., & Wu, C. F. (2007).Characteristics of high-sulfate wastewater treatment by twophase anaerobic digestion process with Jet-loop anaerobic fluidized bed. Journal of Environmental Sciences, 19, 264-270. DOI: 10.1016/s1001-0742(07)60043-6. Search in Google Scholar

Wett, B., Phothilangka, P., & Eladawy, A. (2010). Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Management, 30, 1057-1062. DOI: 10.1016/j.wasman.2009.12.011. Search in Google Scholar

Wilson, C. A., & Novak, J. T. (2009). Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Research, 43, 4489-4498. DOI: 10.1016/j.watres.2009.07.022. Search in Google Scholar

Yin, F. B., Wang, D. L., Li, Z. F., Ohlsen, T., Hartwig, P., & Czekalla, S. (2015). Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge. Bioresources Technology, 177, 188-193. DOI: 10.1016/j.biortech.2014.11.091. Search in Google Scholar

Yuan, S. H., Liao, P., & Alshawabkeh, A. N. (2014). Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater.Environmental Science & Technology, 48, 656-663. DOI: 10.1021/es404535q. Search in Google Scholar

Zhen, G. G., Lu, X. Q., Li, Y. Y., Zhao, Y. C., Wang, B. Y., Song, Y., Chai, X. L., Niu, D. J., & Cao, X. Y. (2012a). Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation. Bioresource Technology, 119, 7-14. DOI: 10.1016/j.biortech.2012.05.115. Search in Google Scholar

Zhen, G. G., Lu, X. Q., Wang, B. Y., Zhao, Y. C., Chai, X. L., Niu, D. J., Zhao, A. H., Li, Y. Y., Song, Y., & Cao, X. Y. (2012b). Synergetic pretreatment of waste activated sludge by Fe(II)-activated persulfate oxidation under mild temperature for enhanced dewaterability. Bioresource Technology, 124, 29-36. DOI: 10.1016/j.biortech.2012.08.039. Search in Google Scholar

Zhen, G. Y., Lu, X. Q., Li, Y. Y., & Zhao, Y. C. (2013). Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge. Bioresource Technology, 136, 654-663. DOI: 10.1016/j.biortech.2013.03.007. Search in Google Scholar

Zhou, L., Zheng, W., Ji, Y. F., Zhang, J. F., Zeng, C., Zhang, Y., Wang, Q., & Yang, X. (2013). Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. Journal of Hazardous Materials, 263, 422-430. DOI: 10.1016/j.jhazmat.2013.09.056. Search in Google Scholar

Received: 2015-5-19
Accepted: 2015-6-19
Published Online: 2015-9-1
Published in Print: 2015-9-1

© Institute of Chemistry, Slovak Academy of Sciences