Accessible Unlicensed Requires Authentication Published by De Gruyter February 1, 2016

A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties

Elisa Moretti, Manuela Aversa, Alberto Scrivanti, Loretta Storaro, Aldo Talon, Riccardo Marin, Juan Antonio Cecilia, Enrique Rodríguez-Castellón and Stefano Polizzi
From the journal Chemical Papers

A new synthesised triphenylamine-based dye having a branched structure with one OH-ending branch able to interact with the surface hydroxyl moieties of mesoporous TiO2 is reported. Optical properties of the dye-titania hybrid material are presented and the higher efficiency of the dye on pure anatase TiO2 compared to the commercial Degussa P25, which contains a rutile phase component, is confirmed. The optical and chemical properties of the dye make it a promising candidate as a metal-free dye for DSSCs or as a host for a variety of transition or main group metal ions for different applications.


The authors acknowledge financial support from the Universities of Venice and Málaga and the Consortium INSTM (Italy). Projects CTQ2012-37925-C03-03 and CTQ2012-30703 of Ministerio de Economía y Competitividad (Spain) and project of Excellence P12 RNM 1565 (Junta de Andalucía, Spain) are also acknowledged for financial support.


Amadio, E., Bertoldini, M., Scrivanti, A., Chessa, G., Beghetto, V., Matteoli, U., Bertani, R., & Dolmella, A. (2011). Synthesis, crystal structure, solution behaviour and catalytic activity of a palladium(II)-allyl complex containing a 2-pyridyl-1,2,3-triazole bidentate ligand. Inorganica Chimica Acta, 370, 388–393. DOI: 10.1016/j.ica.2011.02.002. Search in Google Scholar

Ardo, S., & Meyer, G. J. (2009). Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews, 38, 115–164. DOI: 10.1039/b804321n. Search in Google Scholar

Armarego, W. L. F., & Perrin, D. D. (1996). Purification of laboratory chemicals (4th ed.). Oxford, UK: Butterworth-Heinemann. Search in Google Scholar

Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Grätzel, M. (1997). Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 80, 3157–3171. DOI: 10.1111/j.1151-2916.1997.tb03245.x. Search in Google Scholar

Barnard, A. S., & Curtiss, L. A. (2005). Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Letters, 5, 1261–1266. DOI: 10.1021/nl050355m. Search in Google Scholar

Bolje, A., Urankar, D., & Košmrlj, J. (2014). Synthesis and NMR analysis of 1,4-disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine rings. European Journal of Organic Chemistry, 36, 8167–8181. DOI: 10.1002/ejoc.201403100. Search in Google Scholar

Brotherton, W. S., Michaels, H. A., Simmons, J. T., Clark, R. J., Dalal, N. S., & Zhu, L. (2009). Apparent copper(II)-accelerated azide-alkyne cycloaddition. Organic Letters, 11, 4954–4957. DOI: 10.1021/ol9021113. Search in Google Scholar

Cai, S. Y., Hu, X. H., Zhang, Z. Y., Su, J. H., Li, X., Islam, A., Han, L. Y., & Tian, H. (2013). Rigid triarylamine-based efficient DSSC sensitizers with high molar extinction coefficients. Journal of Materials Chemistry A, 1, 4763–4772. DOI: 10.1039/c3ta01657a. Search in Google Scholar

Chen, D. H., Huang, F. Z., Cheng, Y. B., & Caruso, R. A. (2009). Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 21, 2206–2210. DOI: 10.1002/adma.200802603. Search in Google Scholar

D’Arienzo, M., Carbajo, J., Bahamonde, A., Crippa, M., Polizzi, S., Scotti, R., Wahba, L., & Morazzoni, F. (2011). Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: A probe to evaluate the role of crystal facets in photocatalytic processes. Journal of the American Chemical Society, 133, 17652–17661. DOI: 10.1021/ja204838s. Search in Google Scholar

De Jesus Trindade, F., Queiruga Rey, J. F., & Brochsztain, S. (2011). Covalent attachment of 4-amino-1,8-naphthalimides onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. Dyes and Pigments, 89, 97–104. DOI: 10.1016/j.dyepig.2010.09.009. Search in Google Scholar

Duan, T. N., Fan, K., Fu, Y., Zhong, C., Chen, X. G., Peng, T. Y., & Qin, J. G. (2012). Triphenylamine-based organic dyes containing a 1,2,3-triazole bridge for dye-sensitized solar cells via a ‘click’ reaction. Dyes and Pigments, 94, 28–33. DOI: 10.1016/j.dyepig.2011.11.008. Search in Google Scholar

Enzo, S., Polizzi, S., & Benedetti, A. (1985). Application of fitting techniques to the Warren-Averbach method for X-ray line broadening analysis. Zeitschrift für Kristallographie, 170, 275–287. DOI: 10.1524/zkri.1985.170.14.275. Search in Google Scholar

Enzo, S., Fagherazzi, G., Benedetti, A., & Polizzi, S. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology. Journal of Applied Crystallography, 21, 536–542. DOI: 10.1107/s0021889888006612. Search in Google Scholar

Finnie, K. S., Cassidy, D. J., Bartlett, J. R., & Woolfrey, J. L. (2001). IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films. Langmuir, 17, 816–820. DOI: 10.1021/la0009240. Search in Google Scholar

Ganschow, M., Wark, M., Wöhrle, D., & Schulz-Ekloff, G. (2000). Anchoring of functional dye molecules in MCM-41 by microwave-assisted hydrothermal cocondensation. Ange-wandte Chemie International Edition, 39, 160–163. DOI: 10.1002/(SICI)1521-3773(20000103)39:1<160::AID-ANIE 160>3.0.CO;2-V. Search in Google Scholar

Gómez-Romero, P., & Sanchez, C. (Eds.) (2004). Functional hybrid materials. Weinheim, Germany: Wiley-VCH. Search in Google Scholar

Grätzel, M. (2009). Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research, 42, 1788–1798. DOI: 10.1021/ar900141y. Search in Google Scholar

Gu, X., Zhou, L., Li, Y. W., Sun, Q. A., & Jena, P. (2012). Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study. Physics Letters A, 376, 2595–2599. DOI: 10.1016/j.physleta.2012.07.020. Search in Google Scholar

Hagberg, D. P., Yum, J. H., Lee, H. J., De Angelis, F., Marinado, T., Karlson, K. M., Humphry-Baker, R., Sun, L. C., Hagfeldt, A., Grätzel, M., & Nazeeruddin, M. K. (2008). Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. Journal of the American Chemical Society, 130, 6259–6266. DOI: 10.1021/ja800066y. Search in Google Scholar

Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110, 6595–6663. DOI: 10.1021/cr900356p. Search in Google Scholar

Harima, Y., Fujita, T., Kano, Y., Imae, I., Komaguchi, K., Ooyama, Y., & Ohshita, J. (2013). Lewis-acid sites of TiO2 surface for adsorption of organic dye having pyridyl group as anchoring unit. The Journal of Physical Chemistry C, 117, 16364–16370. DOI: 10.1021/jp405835y. Search in Google Scholar

He, J. X., Wu, W. J., Hua, J. L., Jiang, Y. H., Qu, S. Y., Li, J., Long, Y. T., & Tian, H. (2011). Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. Journal of Materials Chemistry, 21, 6054–6062. DOI: 10.1039/c0jm03811c. Search in Google Scholar

Katono, M., Bessho, T., Meng, S., Humphry-Baker, R., Rothen-berger, G., Zakeeruddin, S. M., Kaxiras, E., & Grätzel, M. (2011). D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells. Langmuir, 27, 14248–14252. DOI: 10.1021/la203104v. Search in Google Scholar

Kolb, H. C, Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11 <2004::AID-ANIE2004>3.0.CO;2-5. Search in Google Scholar

Latterini, L., Nocchetti M., Aloisi, G. G., Costantino, U., & Elisei, F. (2007). Organized chromophores in layered inorganic matrices. Inorganica Chimica Acta, 360, 728–740. DOI: 10.1016/j.ica.2006.07.048. Search in Google Scholar

Lázaro Martínez, J. M., Rodríguez-Castellón, E., Torres Sánchez, R. M., Denaday, L. R., Buldain, G. Y., & Campo Dall’Orto, V. (2011). XPS studies on the Cu(I,II)–polyam-pholyte heterogeneous catalyst: An insight into its structure and mechanism. Journal of Molecular Catalysis A: Chemical, 339, 43–51. DOI: 10.1016/j.molcata.2011.02.010. Search in Google Scholar

Li, Z. A., Wu, W. B., Li, Q. Q., Yu, G., Xiao, L., Liu, Y. Q., Ye, C., Qin, J., & Li, Z. (2010). High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angewandte Chemie International Edition, 49, 2763–2767. DOI: 10.1002/anie. 200906946. Search in Google Scholar

Lobo-Lapidus, R. J., & Gates, B. C. (2010). Probing surface sites of TiO2: Reactions with [HRe(CO)5] and [CH3Re(CO)5]. Chemistry – A European Journal, 16, 11386–11398. DOI: 10.1002/chem.201000267. Search in Google Scholar

Mao, J. Y., He, N. N., Ning, Z. J., Zhang, Q., Guo, F. L., Chen, L., Wu, W. J., Hua, J. L., & Tian, H. (2012). Stable dyes containing double acceptors without COOH as anchors for highly efficient dye-sensitized solar cells. Angewandte Chemie International Edition, 51, 9873–9876. DOI: 10.1002/anie. 201204948. Search in Google Scholar

Michinobu, T., Satoh, N., Cai, J. H., Li, Y. R., & Han, L. Y. (2014). Novel design of organic donor–acceptor dyes without carboxylic acid anchoring groups for dye-sensitized solar cells. Journal of Materials Chemistry C, 2, 3367–3372. DOI: 10.1039/c3tc32165g. Search in Google Scholar

Moretti, E., Storaro, L., Chessa, G., Talon, A., Callone, E., Mueller, K. J., Enrichi, F., & Lenarda, M. (2012). Stepwise dansyl grafting on the kaolinite inter layer surface. Journal of Colloid and Interface Science, 375, 112–117. DOI: 10.1016/j.jcis.2012.02.033. Search in Google Scholar

Nazeeruddin, M. K., Humphry-Baker, R., Officer, D. L., Campbell, W. M., Burrell, A. K., & Grätzel, M. (2004). Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir, 20, 6514–6517. DOI: 10.1021/la0496082. Search in Google Scholar

Ning, Z., Chen, Z., Zhang, Q., Yan, Y., Qian, S., Cao, Y., & Tian, H. (2007). Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter. Advanced Functional Materials, 17, 3799–3807. DOI: 10.1002/adfm.200700649. Search in Google Scholar

Ning, Z. J., Zhang, Q., Wu, W. J., Pei, H. C, Liu, B., & Tian, H. (2008). Starburst triarylamine based dyes for efficient dye-sensitized solar cells. The Journal of Organic Chemistry, 73, 3791–3797. DOI: 10.1021/jo800159t. Search in Google Scholar

Ning, Z. J., & Tian, H. (2009). Triarylamine: a promising core unit for efficient photovoltaic materials. Chemical Communications, 2009, 5483–5495. DOI: 10.1039/b908802d. Search in Google Scholar

Ooyama, Y., Nagano, T., Inoue, S., Imae, I., Komaguchi, K., Ohshita, J., & Harima, Y. (2011). Dye-sensitized solar cells based on do nor-π-acceptor fluorescent dyes with a pyridine ring as an electron-withdrawing-injecting anchoring group. Chemistry – A European Journal, 17, 14837–14843. DOI: 10.1002/chem. 201101923. Search in Google Scholar

Parent, M., Mongin, O., Kamada, K., Katan, C, & Blanchard-Desce, M. (2005). New chromophores from click chemistry for two-photon absorption and tuneable photoluminescence. Chemical Communications, 2005, 2029–2031. DOI: 10.1039/b419491h. Search in Google Scholar

Park, S. H., Ogino, K., & Sato, H. (2000). Synthesis and characterization of photorefractive polymers with triphenylamine unit and NLO chromophore unit on a side chain. Polymers for Advanced Technologies, 11, 349–358. DOI: 10.1002/1099-1581(200007)11:7<349::AID-PAT978>3.0.CO;2-Z. Search in Google Scholar

Pesek, J. J. (1990). Some new perspectives on the chemical modification of silica. In D. E. Leyden, & W. T. Collins (Eds.), Chemically modified oxide surfaces (Vol. 3, pp. 93–107). New York, NY, USA: Gordon & Breach. Search in Google Scholar

Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C, de Coss, R., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19, 145605. DOI: 10.1088/0957-4484/19/14/145605. Search in Google Scholar

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition, 41, 2596–2599. DOI: 10.1002/1521-3773(20020715)41:14<2596:: AID-ANIE2596>3.0.CO;2-4. Search in Google Scholar

Scotti, R., D’Arienzo, M., Testino, A., & Morazzoni, F. (2009). Photocatalytic mineralization of phenol catalyzed by pure and mixed phase hydrothermal titanium dioxide. Applied Catalysis B: Environmental, 88, 497–504. DOI: 10.1016/j.apcatb.2008.10.017. Search in Google Scholar

Segal-Peretz, T., Jahnke, J. P., Berenson, A., Neeman, L., Oron, D., Rossini, A. J., Chmelka, B. F., & Frey, G. L. (2014). Understanding and promoting molecular interactions and charge transfer in dye-mediated hybrid photovoltaic materials. The Journal of Physical Chemistry C, 118, 25374–2539. DOI: 10.1021/jp508819w. Search in Google Scholar

Sharifi, N., Tajabadi, F., & Taghavinia, N. (2014). Recent developments in dye-sensitized solar cells. ChemPhysChem, 15, 3902–3927. DOI: 10.1002/cphc.201402299. Search in Google Scholar

Testino, A., Bellobono, I. R., Buscaglia, V., Canevali, C, D’Arienzo, M., Polizzi, S., Scotti, R., & Morazzoni, F. (2007). Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. Journal of the American Chemical Society, 129, 3564–3575. DOI: 10.1021/ja067050+. Search in Google Scholar

Urankar, D., Pinter, B., Pevec, A., De Proft, F., Turel, I., & Košmrlj, J. (2010). Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorganic Chemistry, 49, 4820–4829. DOI: 10.1021/ic902354e. Search in Google Scholar

Wang, Z. S., Huang, Y. Y., Cheng, C. H., Zheng, J., Cheng, H. M., & Tian, S. J. (2000). Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative. Synthetic Metals, 114, 201–207. DOI: 10.1016/s0379-6779(00)00261-7. Search in Google Scholar

Zhang, L. X., Liu, P., & Su, Z. X. (2006). Preparation of PAN I–TiO2 nano composites and their solid-phase photocatalytic degradation. Polymer Degradation and Stability, 91, 2213–2219. DOI: 10.1016/j.polymdegradstab.2006.01.002. Search in Google Scholar

Zhang, G. L., Bala, H. R., Cheng, Y. M., Shi, D., Lv, X. J., Yu, Q. J., & Wang, P. (2009a). High efficiency and stable dye sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chemical Communications, 2009, 2198–2200. DOI: 10.1039/b822325d. Search in Google Scholar

Zhang, Q., Ning, Z. J., & Tian, H. (2009b). ‘Click’ synthesis of starburst triphenylamine as potential emitting material. Dyes and Pigments, 81, 80–84. DOI: 10.1016/j.dyepig.2008. 09.005. Search in Google Scholar

Zhang, M. D., Pan, H., Ju, X. H., Ji, Y. J., Qin, L., Zheng, H. G., & Zhou, X. F. (2012). Improvement of dye-sensitized solar cells’ performance through introducing suitable heterocyclic groups to triarylamine dyes. Physical Chemistry Chemical Physics, 14, 2809–2815. DOI: 10.1039/c2cp23876d. Search in Google Scholar

Zhao, W. J., Li, D. M., He, B., Zhang, J. L., Huang, J. Z., & Zhang, L. Z. (2005). The photoluminescence of coumarin derivative encapsulated in MCM-41 and Ti-MCM-41. Dyes and Pigments, 64, 265–270. DOI: 10.1016/j.dyepig.2004.06. 002. Search in Google Scholar

Received: 2015-3-24
Revised: 2015-6-30
Accepted: 2015-6-30
Published Online: 2016-2-1
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences