Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter Mouton October 16, 2018

Attractors of variation in Hungarian inflectional morphology

  • Péter Rácz

    Péter Rácz is an associate at the Research Institute for Linguistics of the Hungarian Academy of Sciences and at the University of Bristol. His interests include the interactions of cognition and culture in language and elsewhere, the mechanics of learning, and replicability and transparency in scientific research.

    EMAIL logo
    , Péter Rebrus

    Péter Rebrus is a senior research fellow at the at the Research Institute for Linguistics of the Hungarian Academy of Sciences. A renowned expert on Hungarian verbal morphology, he is interested in morphological variation and the structure of the mental lexicon.

    and Miklós Törkenczy

    Miklós Törkenczy is a full professor at the Department of English Linguistics, Eötvös Loránd Science University and the Research Institute for Linguistics, Hungarian Academy of Sciences. Co-author of the Phonology of Hungarian, his interests include morpho-phonological and morphological variation.

Abstract

We use algorithmic learning and statistical methods over a form frequency list (compiled from the Hungarian web corpus) to investigate variation in Hungarian verbal inflection. Our aims are twofold: (i) to give an adequate description of this variation, which has not been described in detail in the literature and (ii) to explore the range and depth of lexical attractors that potentially shape this variation. These attractors range from closely related ones, such as the shape of the word form or the behaviour of the verb’s paradigm, to broad ones, such as the behaviour of similar verbs or the phonotactics of related verb forms. We find that verbal variation is predominantly determined by similarity to related verb forms rather than by word shape or by word frequency. What is more, the effect of similarity is better approximated using inflected forms as opposed to base forms as points of comparison. This, in turn, supports a rich memory model of morphology and the mental lexicon.

About the authors

Péter Rácz

Péter Rácz is an associate at the Research Institute for Linguistics of the Hungarian Academy of Sciences and at the University of Bristol. His interests include the interactions of cognition and culture in language and elsewhere, the mechanics of learning, and replicability and transparency in scientific research.

Péter Rebrus

Péter Rebrus is a senior research fellow at the at the Research Institute for Linguistics of the Hungarian Academy of Sciences. A renowned expert on Hungarian verbal morphology, he is interested in morphological variation and the structure of the mental lexicon.

Miklós Törkenczy

Miklós Törkenczy is a full professor at the Department of English Linguistics, Eötvös Loránd Science University and the Research Institute for Linguistics, Hungarian Academy of Sciences. Co-author of the Phonology of Hungarian, his interests include morpho-phonological and morphological variation.

Appendix

The list of stems in the data in 3sg.indef is, in orthographic form, contained in Table 6. We consider both the CVC and the CC forms of the 3sg.indef – here, only the CC form is printed. Table 7 lists, for each form, the most frequent CVC form in the corpus. Table 8 lists, for each form, the most frequent CC form in the corpus.

A note on the orthography: á:[aː], é:[eː], a:[ɒ], e:[ɛ], ö:[ø], ü:[y], sz:[s], s:[ʃ], zs:[ʒ], ny:[ɲ]

Table 6:

List of verbs. ‘Form 3sg’ is the 3sg.ind form, ‘ikfreq’ is the frequency of the 3sg.ind, ‘cvc freq total’ is the summed frequency of CVC forms, ‘cc freq total’ is the summed frequency of CC forms, ‘cvc cc odds’ is the odds ratio, ‘gloss stem’ is the gloss of the stem.

form_3sg ikfreq cvc_freq_total cc_freq_total cvc_cc_odds gloss_stem
áramlik 2773 177 968 1.18 flow
bomlik 1746 16 960 1.02 decompose
botlik 493 9 343 1.03 toddle
burjánzik 247 32 117 1.28 burgeon
bűzlik 560 1 107 1.02 stink
döglik 381 29 302 1.10 perish
dohányzik 1314 2253 3 752.33 smoke
elhangzik 2545 192 1061 1.18 be voiced
feslik 18 3 19 1.21 peel
fogzik 21 6 3 3.33 tooth
fuldoklik 276 220 21 11.52 choke
hajlik 2439 919 1363 1.67 bend
haldoklik 821 161 18 10.00 die
hangzik 17253 474 5550 1.09 sound
hiányzik 29456 11538 346 34.35 be missing
hullámzik 722 126 218 1.58 wave
kiviláglik 728 2 20 1.15 light up
ködlik 25 1 16 1.12 fog
lélegzik 862 1084 176 7.16 breathe
lúdbőrzik 11 7 2 5.00 get goosebumps
omlik 803 59 654 1.09 collapse
ömlik 1693 11 610 1.02 pour
oszlik 3818 27 1600 1.02 decompose
ötlik 460 5 118 1.05 occur
özönlik 229 7 716 1.01 surge
párzik 101 15 132 1.12 mate
patakzik 57 1 62 1.03 efflux
rajzik 91 6 183 1.04 swarm
romlik 5257 19 2480 1.01 degrade
sereglik 80 12 294 1.04 rally
szólamlik 13 1 3 1.67 voice
tajtékzik 81 12 15 1.87 tantrum
tündöklik 164 482 21 24.00 shine
ugrik 3620 12 3769 1.00 jump
vérzik 1248 479 24 21.00 bleed
viharzik 68 1 34 1.06 storm
világlik 146 20 21 2.00 lighten
virágzik 3133 814 250 4.26 bloom
viszonylik 172 2319 13 179.46 relate
Table 7:

List of verbs with most frequent CVC form. ‘Form 3sg’ is the 3sg.ind form, ‘best cvc form’ is the most frequent CVC form of the verb, ‘freq cvc form’ is the frequency of this specific form, ‘gloss suffix’ is the gloss of the suffix, ‘gloss stem’ is the gloss of the stem.

form_3sg best_cvc_form freq_cvc_form gloss_suffix gloss_stem
áramlik áramolni 75 inf flow
bomlik bomolni 6 inf decompose
botlik botolnak 3 3pl.ind toddle
burjánzik burjánoztak 16 3pl.past burgeon
bűzlik bűzölni 1 inf stink
döglik dögölni 18 inf perish
dohányzik dohányozni 1493 inf smoke
elhangzik elhangoztak 89 3pl.past be voiced
feslik feseltek 1 3pl.past peel
fogzik fogaznak 4 3pl.ind tooth
fuldoklik fuldokolni 130 inf choke
hajlik hajolni 400 inf bend
haldoklik haldokolnak 72 3pl.ind die
hangzik hangoztak 201 3pl.past sound
hiányzik hiányoznak 7012 3pl.ind be missing
hullámzik hullámoztak 59 3pl.past wave
kiviláglik kivilágolnak 1 3pl.ind light up
ködlik ködölni 1 inf fog
lélegzik lélegezni 677 inf breathe
lúdbőrzik lúdbőrözni 4 inf get goosebumps
omlik omolnak 23 3pl.ind collapse
ömlik ömölni 4 inf pour
oszlik oszolni 11 inf decompose
ötlik ötölni 2 inf occur
özönlik özönölnek 4 3pl.ind surge
párzik pározni 14 inf mate
patakzik patakoznak 1 3pl.ind efflux
rajzik rajoznak 5 3pl.ind swarm
romlik romolni 9 inf degrade
sereglik seregeltek 4 3pl.past rally
szólamlik szólamolnak 1 3pl.ind voice
tajtékzik tajtékoznak 9 3pl.ind tantrum
tündöklik tündökölni 208 inf shine
ugrik ugornak 12 3pl.ind jump
vérzik vérezni 232 inf bleed
viharzik viharoznak 1 3pl.ind storm
világlik világolnak 8 3pl.ind lighten
virágzik virágoznak 378 3pl.ind bloom
viszonylik viszonyulnak 1339 3pl.ind relate
Table 8:

List of verbs with most frequent CC form. ‘Form 3sg’ is the 3sg.ind form, ‘best cc form’ is the most frequent CC form of the verb, ‘freq cc form’ is the frequency of this specific form, ‘gloss suffix’ is the gloss of the suffix, ‘gloss stem’ is the gloss of the stem.

form_3sg best_cc_form freq_cc_form gloss_suffix gloss_stem
áramlik áramlanak 593 3pl.ind flow
bomlik bomlanak 710 3pl.ind decompose
botlik botlanak 168 3pl.ind toddle
burjánzik burjánzanak 76 3pl.ind burgeon
bűzlik bűzlenek 42 3pl.ind stink
döglik dögleni 136 inf perish
dohányzik dohányzani 2 inf smoke
elhangzik elhangzanak 937 3pl.ind be voiced
feslik feslenek 9 3pl.ind peel
fogzik fogzani 2 inf tooth
fuldoklik fuldoklani 11 inf choke
hajlik hajlanak 916 3pl.ind bend
haldoklik haldoklanak 11 3pl.ind die
hangzik hangzottak 3019 3pl.past sound
hiányzik hiányzanak 326 3pl.ind be missing
hullámzik hullámzanak 87 3pl.ind wave
kiviláglik kiviláglanak 12 3pl.ind light up
ködlik ködlenek 10 3pl.ind fog
lélegzik lélegzeni 144 inf breathe
lúdbőrzik lúdbőrzenek 2 3pl.ind get goosebumps
omlik omlanak 256 3pl.ind collapse
ömlik ömlenek 253 3pl.ind pour
oszlik oszlanak 1132 3pl.ind decompose
ötlik ötlenek 55 3pl.ind occur
özönlik özönlöttek 320 3pl.past surge
párzik párzanak 88 3pl.ind mate
patakzik patakzottak 35 3pl.past efflux
rajzik rajzanak 160 3pl.ind swarm
romlik romlottak 979 3pl.past degrade
sereglik sereglettek 174 3pl.past rally
szólamlik szólamlani 2 inf voice
tajtékzik tajtékzottak 8 3pl.past tantrum
tündöklik tündöklenek 14 3pl.ind shine
ugrik ugrani 2151 inf jump
vérzik vérzenek 9 3pl.ind bleed
viharzik viharzottak 18 3pl.past storm
világlik világlottak 11 3pl.past lighten
virágzik virágzanak 187 3pl.ind bloom
viszonylik viszonylanak 13 3pl.ind relate

References

Albright, Adam. 2009. Modeling analogy as probabilistic grammar. Analogy in grammar 185–213.10.1093/acprof:oso/9780199547548.003.0009Search in Google Scholar

Albright, Adam & Bruce Hayes. 2003. Rules vs. analogy in English past tenses: A computational/experimental study. Cognition 90(2). 119–161.10.1016/S0010-0277(03)00146-XSearch in Google Scholar

Alegre, Maria & Peter Gordon. 1999. Rule-based versus associative processes in derivational morphology. Brain and Language 68(1). 347–354.10.1006/brln.1999.2066Search in Google Scholar

Baayen, R Harald. 2007. Storage and computation in the mental lexicon. The mental lexicon: Core perspectives 81–104.10.1163/9780080548692_006Search in Google Scholar

Baayen, R Harald. 2008. Analyzing linguistic data: A practical introduction to statistics using R. Cambridge University Press.10.1017/CBO9780511801686Search in Google Scholar

Baayen, R Harald, Ton Dijkstra & Robert Schreuder. 1997. Singulars and plurals in Dutch: Evidence for a parallel dual-route model. Journal of Memory and Language 37(1). 94–117.10.1006/jmla.1997.2509Search in Google Scholar

Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1). 1–48. 10.18637/jss.v067.i01.10.18637/jss.v067.i01Search in Google Scholar

Bickel, Balthasar, Bernard Comrie & Martin Haspelmath. 2008. The Leipzig Glossing Rules. Conventions for interlinear morpheme by morpheme glosses. Revised version of February.Search in Google Scholar

Blevins, James P. 2001. Paradigmatic derivation. Transactions of the Philological Society 99(2). 211–222.10.1111/1467-968X.00080Search in Google Scholar

Blevins, James P. 2006. Word-based morphology. Journal of Linguistics 42(3). 531–573.10.1017/S0022226706004191Search in Google Scholar

Bloomfield, Leonard. 1926. A set of postulates for the science of language. Language 2(3). 153–164.10.2307/408741Search in Google Scholar

Booij, Geert. 1999. Lexical storage and regular processes. Behavioral and Brain Sciences 22(6). 1016–1016.10.1017/S0140525X99242227Search in Google Scholar

Bresnan, Joan, Anna Cueni, Tatiana Nikitina, R. Harald Baayen, et al. 2007. Predicting the dative alternation. In G. Boume, I. Kraemer & J. Zwarts (eds.), Cognitive Foundations of Interpretation, 69–94. Amsterdam: Royal Netherlands Academy of Science.Search in Google Scholar

Bybee, Joan. 1995. Regular morphology and the lexicon. Language and cognitive processes 10(5). 425–455.10.1093/acprof:oso/9780195301571.003.0008Search in Google Scholar

Bybee, Joan L. 1985. Morphology: A study of the relation between meaning and form, vol. 9. Amsterdam: John Benjamins Publishing.10.1075/tsl.9Search in Google Scholar

Bybee, Joan L & Dan I Slobin. 1982. Rules and schemas in the development and use of the English past tense. Language 58(2). 265–289.10.1353/lan.1982.0021Search in Google Scholar

Carreiras, Manuel, Andrea Mechelli & Cathy J Price. 2006. Effect of word and syllable frequency on activation during lexical decision and reading aloud. Human brain mapping 27(12). 963–972.10.1002/hbm.20236Search in Google Scholar

Christiansen, Morten H & Simon Kirby. 2003. Language evolution: Consensus and controversies. Trends in cognitive sciences 7(7). 300–307.10.1016/S1364-6613(03)00136-0Search in Google Scholar

Clements, George N. 1990. The role of the sonority cycle in core syllabification. Papers in laboratory phonology 1. 283–333.10.1017/CBO9780511627736.017Search in Google Scholar

Colé, Pascale, Juan Segui & Marcus Taft. 1997. Words and morphemes as units for lexical access. Journal of Memory and Language 37(3). 312–330.10.1006/jmla.1997.2523Search in Google Scholar

Cuskley, Christine F, Martina Pugliese, Claudio Castellano, Francesca Colaiori, Vittorio Loreto & Francesca Tria. 2014. Internal and external dynamics in language: evidence from verb regularity in a historical corpus of English. PloS one 9(8). e102882.10.1371/journal.pone.0102882Search in Google Scholar

Dąbrowska, Ewa. 2008. The effects of frequency and neighbourhood density on adult speakers’ productivity with Polish case inflections: An empirical test of usage-based approaches to morphology. Journal of Memory and Language 58(4). 931–951.10.1016/j.jml.2007.11.005Search in Google Scholar

Dawdy-Hesterberg, Lisa Garnand & Janet Breckenridge Pierrehumbert. 2014. Learnability and generalisation of Arabic broken plural nouns. Language, cognition and neuroscience 29(10). 1268–1282.10.1080/23273798.2014.899377Search in Google Scholar

Dominguez, Alberto, Maira Alija, Javier Rodriguez-Ferreiro & Fernando Cuetos. 2010. The contribution of prefixes to morphological processing of Spanish words. European Journal of Cognitive Psychology 22(4). 569–595.10.1080/09541440903007792Search in Google Scholar

Duñabeitia, Jon Andoni, Sachiko Kinoshita, Manuel Carreiras & Dennis Norris. 2011. Is morpho-orthographic decomposition purely orthographic? Evidence from masked priming in the same–different task. Language and Cognitive Processes 26(4-6). 509–529.10.1080/01690965.2010.499215Search in Google Scholar

Flom, Peter L & David L Cassell. 2007. Stopping stepwise: Why stepwise and similar selection methods are bad, and what you should use. In NorthEast SAS Users Group Inc 20th Annual Conference: 11-14th November 2007; Baltimore, Maryland, NorthEast SAS Users Group.Search in Google Scholar

Fox, John, Jangman Hong et al. 2009. {Effect displays in R for multinomial and proportional-odds logit models: Extensions to the effects package}. Journal of Statistical Software 32(1). 1–24.10.18637/jss.v032.i01Search in Google Scholar

Frisch, Stefan A, Janet B Pierrehumbert & Michael B Broe. 2004. Similarity avoidance and the OCP. Natural Language & Linguistic Theory 22(1). 179–228.10.1023/B:NALA.0000005557.78535.3cSearch in Google Scholar

Gelman, Andrew & Jennifer Hill. 2007. Data analysis using regression and multilevelhierarchical models, vol. 1. New York: Cambridge University Press New York.Search in Google Scholar

Gonnerman, Laura M., Mark S. Seidenberg & Elaine S. Andersen. 2007. Graded semantic and phonological similarity effects in priming: Evidence for a distributed connectionist approach to morphology. Journal of Experimental Psychology: General 136(2). 323–345.10.1037/0096-3445.136.2.323Search in Google Scholar

Grainger, Jonathan. 1990. Word frequency and neighborhood frequency effects in lexical decision and naming. Journal of memory and language 29(2). 228–244.10.1016/0749-596X(90)90074-ASearch in Google Scholar

Grainger, Jonathan, Pascale Colé & Juan Segui. 1991. Masked morphological priming in visual word recognition. Journal of Memory and Language 30(3). 370–384.10.1016/0749-596X(91)90042-ISearch in Google Scholar

Hahn, Ulrike & Ramin Charles Nakisa. 2000. German inflection: single route or dual route? Cognitive Psychology 41(4). 313–360.10.1006/cogp.2000.0737Search in Google Scholar

Halácsy, Péter, András Kornai & Csaba Oravecz. 2007. HunPos: an open source trigram tagger. In Proceedings of the 45th annual meeting of the acl on interactive poster and demonstration sessions, 209–212. Association for Computational Linguistics.10.3115/1557769.1557830Search in Google Scholar

Harris, John. 2006. The phonology of being understood: Further arguments against sonority. Lingua 116(10). 1483–1494.10.1016/j.lingua.2005.07.009Search in Google Scholar

Hay, Jennifer B & R Harald Baayen. 2005. Shifting paradigms: gradient structure in morphology. Trends in cognitive sciences 9(7). 342–348.10.1016/j.tics.2005.04.002Search in Google Scholar

Hayes, Bruce & Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. Linguistic inquiry 39(3). 379–440.10.1162/ling.2008.39.3.379Search in Google Scholar

Jaeger, T Florian. 2008. Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of memory and language 59(4). 434–446.10.1016/j.jml.2007.11.007Search in Google Scholar

Janda, Laura A, Tore Nesset & R Harald Baayen. 2010. Capturing correlational structure in Russian paradigms: A case study in logistic mixed-effects modeling. Corpus Linguistics and Linguistic Theory 6(1). 29–48.10.1515/cllt.2010.002Search in Google Scholar

Johnson, Keith. 2006. Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. Journal of phonetics 34(4). 485–499.10.1016/j.wocn.2005.08.004Search in Google Scholar

Kidd, Evan & Minna Kirjavainen. 2011. Investigating the contribution of procedural and declarative memory to the acquisition of past tense morphology: Evidence from Finnish. Language and Cognitive Processes 26(4-6). 794–829.10.1080/01690965.2010.493735Search in Google Scholar

Kirby, Simon, Monica Tamariz, Hannah Cornish & Kenny Smith. 2015. Compression and communication in the cultural evolution of linguistic structure. Cognition 141. 87–102.10.1016/j.cognition.2015.03.016Search in Google Scholar

Krott, Andrea, R Harald Baayen & Robert Schreuder. 2001. Analogy in morphology: modeling the choice of linking morphemes in Dutch. Linguistics 39(1; ISSU 371). 51–94.10.1515/ling.2001.008Search in Google Scholar

Labov, William. 2011. Principles of linguistic change, cognitive and cultural factors, vol. 3. Oxford: John Wiley & Sons.10.1002/9781444327496Search in Google Scholar

Lindsay, Shane, Leanne M. Sedin & M. Gareth Gaskell. 2012. Acquiring novel words and their past tenses: Evidence from lexical effects on phonetic categorisation. Journal of Memory and Language 66(1). 210–225.10.1016/j.jml.2011.07.005Search in Google Scholar

Lukács, Ágnes, Péter Rebrus & Miklós Törkenczy. 2010. Defective verbal paradigms in Hungarian–description and experimental study. In Proceedings of the British Academy, vol. 163, 85.10.5871/bacad/9780197264607.003.0006Search in Google Scholar

Milin, Petar, Dušica Filipović Djurđević & Fermín Moscoso del Prado Martín. 2009. The simultaneous effects of inflectional paradigms and classes on lexical recognition: Evidence from Serbian. Journal of Memory and Language 60(1). 50–64.10.1016/j.jml.2008.08.007Search in Google Scholar

Milnor, John. 1985. On the concept of attractor. In Hunt, Brian R., Judy A. Kennedy, Tien-Yien Li, & Helena E. Nusse (eds.), The theory of chaotic attractors, 243–264. New York, NY: Springer.10.1007/978-0-387-21830-4_15Search in Google Scholar

Mirković, Jelena, Mark S Seidenberg & Marc F Joanisse. 2011. Rules versus statistics: Insights from a highly inflected language. Cognitive science 35(4). 638–681.10.1111/j.1551-6709.2011.01174.xSearch in Google Scholar

Myers, James & Yingshing Li. 2009. Lexical frequency effects in Taiwan Southern Min syllable contraction. Journal of Phonetics 37(2). 212–230.10.1016/j.wocn.2009.02.002Search in Google Scholar

Nakagawa, Shinichi & Holger Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4(2). 133–142.10.1111/j.2041-210x.2012.00261.xSearch in Google Scholar

Németh, Géza & Csaba Zainkó. 2002. Multilingual statistical text analysis, Zipf’s law and Hungarian speech generation. Acta Linguistica Hungarica 49(3-4). 385–405.10.1556/ALing.49.2002.3-4.8Search in Google Scholar

Nosofsky, Robert M. 1990. Relations between exemplar-similarity and likelihood models of classification. Journal of Mathematical Psychology 34(4). 393–418.10.1016/0022-2496(90)90020-ASearch in Google Scholar

Pater, Joe. 2000. Non-uniformity in English secondary stress: the role of ranked and lexically specific constraints. Phonology 17(2). 237–274.10.1017/S0952675700003900Search in Google Scholar

Paul, Hermann. 1880/1995. Prinzipien der Sprachgeschichte [Principles of the history of language], vol. 6. Berlin: Walter de Gruyter.10.1515/9783110929461Search in Google Scholar

Pierrehumbert, Janet B. 2012. The dynamic lexicon. In Abigail Cohn, Cécile Fougeron & Marie Huffman (eds.), The Oxford handbook of laboratory phonology, 173–83. Oxford: Oxford University Press.Search in Google Scholar

Pierrehumbert, Janet B. 2016. Phonological representation: beyond abstract versus episodic. Annual Reviews.10.1146/annurev-linguistics-030514-125050Search in Google Scholar

R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. https://www.R-project.org.Search in Google Scholar

Rácz, Péter, Viktória Papp & Jennifer B. Hay. 2016. Chapter 25. Frequency and corpora. In Andrew Hippisley & Gregory Stump (eds.), The Cambridge Handbook of Morphology, Cambridge, UK: Cambridge University Press.10.1017/9781139814720.024Search in Google Scholar

Rácz, Péter, Janet B Pierrehumbert, Jennifer B Hay & Viktória Papp. 2015. Morphological emergence. In The handbook of language emergence, 123–146. Wiley Online Library.10.1002/9781118346136.ch5Search in Google Scholar

Rácz, Péter & Péter Rebrus. 2012. Variation in the possessive allomorphy of Hungarian. In Current issues in morphological theory:(ir) regularity, analogy and frequency. selected papers from the 14th international morphology meeting, budapest, 13 16 may 2010, vol. 322, 51. John Benjamins Publishing, Amsterdam, NL.10.1075/cilt.322.03racSearch in Google Scholar

Rebrus, Péter. 2000. Morfofonológiai jelenségek [Morphophonological phenomena]. In Ferenc Kiefer (ed.), Strukturális magyar nyelvtan: Morfológia [Structural Hungarian Grammar: Morphology], vol. 3, Budapest: Akadémiai Kiadó.Search in Google Scholar

Rebrus, Péter & Miklós Törkenczy. 2011. Paradigmatic variation in Hungarian. In Approaches to Hungarian. papers from the 2009 debrecen conference, vol. 12, 135–161.Search in Google Scholar

Rumelhart, David E. & James L. McClelland. 1986. On learning the past tenses of English verbs. In Parallel distributed processing (volume 2): Psychological and biological models, 216–271. Cambridge, MA: MIT Press.Search in Google Scholar

Sela, Rebecca J & J. S. Simonoff. 2011. Reemtree: Regression trees with random effects. R package version 0.90 3. 741–749.Search in Google Scholar

Siptár, Péter & Miklós Törkenczy. 2000. The phonology of Hungarian. Oxford, UK: Oxford University Press.Search in Google Scholar

Skousen, Royal. 1989. Analogical modeling of language. Springer Science & Business Media. New York, NY: Springer.10.1007/978-94-009-1906-8Search in Google Scholar

Soskuthy, Marton. 2013. Analogy in the emergence of intrusive-r in English. English Language & Linguistics 17(1). 55–84.10.1017/S1360674312000329Search in Google Scholar

Stemberger, Joseph Paul & Brian MacWhinney. 1986. Frequency and the lexical storage of regularly inflected forms. Memory & Cognition 14(1). 17–26.10.3758/BF03209225Search in Google Scholar

Tagliamonte, Sali A & R Harald Baayen. 2012. Models, forests, and trees of York English: Was/were variation as a case study for statistical practice. Language variation and change 24(2). 135–178.Search in Google Scholar

Trón, Viktor, Péter Halácsy, Péter Rebrus, András Rung, Péter Vajda & Eszter Simon. 2006. Morphdb.hu: Hungarian lexical database and morphological grammar. In Proceedings of 5th international conference on language resources and evaluation (lrec’06), Genova, Italy.Search in Google Scholar

Trón, Viktor, András Kornai, György Gyepesi, László Németh, Péter Halácsy & Dániel Varga. 2005. Hunmorph: Open source word analysis. In Proceedings of the workshop on software, 77–85. Association for Computational Linguistics.10.3115/1626315.1626321Search in Google Scholar

Wang, William S Y. 1969. Competing changes as a cause of residue. Language 3. 9–25.10.2307/411748Search in Google Scholar

Wickham, Hadley. 2009. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. http://ggplot2.org.10.1007/978-0-387-98141-3Search in Google Scholar

Zipf, George Kingsley. 1935. The psycho-biology of language. Houghton, Mifflin. Cambridge, Mass: MIT Press.Search in Google Scholar

Published Online: 2018-10-16
Published in Print: 2021-10-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.2.2023 from https://www.degruyter.com/document/doi/10.1515/cllt-2018-0014/html
Scroll Up Arrow