Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access January 24, 2022

Multi thermal waves in a thermo diffusive piezo electric functionally graded rod via refined multi-dual phase-lag model

  • Poongkothai Jeyaraman , Samydurai Mahesh , Rajendran Selvamani EMAIL logo , Rossana Dimitri and Francesco Tornabene


In the present work, a novel analytical model is provided for wave dispersion in a piezo-thermoelastic diffusive functionally graded rod through the multi-phase lag model and thermal activation. The plain strain model for thermo piezoelectric functionally graded rod is considered. The complex characteristic equations are obtained by using normal mode method which satisfies the nonlinear boundary conditions of piezo-thermoelastic functionally graded rod. The numerical calculations are carried out for copper material. The results of the variants stress, mechanical displacement, temperature and electric distribution, frequency are explored against the geometric parameters and some special parameters graded index, concentration constants are shown graphically. The observed results will be discuss elaborate. The results can be build reasonable attention in piezo-thermoelastic materials and smart materials industry.


[1] Suresh S, Mortensen A. Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites. London: IOM Communications, LTD; 1998.Search in Google Scholar

[2] Tzou HS, Ye R. Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices Mech Syst Signal Process. 1996;10(4):459-469.10.1006/mssp.1996.0032Search in Google Scholar

[3] Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG. Functionally Graded Materials: Design, Processing and Applications. London: Kluwer Academic Publishers; 1999. [doi:10.1016/j.mspro.2014.07.442].10.1016/j.mspro.2014.07.442Search in Google Scholar

[4] Paulino GH, Jin ZH, Dodds RH Jr. Failure of functionally graded materials. In: Comprehensive Structural Integrity. Elsevier Ltd; 2007. p. 607-644.10.1016/B0-08-043749-4/02101-7Search in Google Scholar

[5] Müller E, Drašar C, Schilz J, Kaysser WA. Functionally graded materials for sensor and energy applications. Mater Sci Eng A. 2003 Dec;362(1-2):17-30.10.1016/S0921-5093(03)00581-1Search in Google Scholar

[6] Niino M, Kisar K, Mori M. Feasibility study of FGM technology in space solar power systems(SPSS), Mater Sci Forum. 2005;492:163-8.10.4028/ in Google Scholar

[7] Malinina M, Sammi T, Gasik M. Corrosion resistance of homogeneous and FGM coatings]. Mater Sci Forum. 2005;492–493:305-10. [doi:10.4028/ in Google Scholar

[8] Xing A, Jun Z, Chuanzhen H, Jianhua Z. Development of an advanced ceramic tool material – functionally gradient cutting ceramics. Mater Sci Eng A. 1998;248(1-2):125–31.10.1016/S0921-5093(98)00502-4Search in Google Scholar

[9] Kawasaki A, Watanabe R. Thermal fracture behavior of metal/ceramic functionally graded materials. Eng Fract Mech. 2002;69(14-16):1713-1728.10.1016/S0013-7944(02)00054-1Search in Google Scholar

[10] Woodward B, Kashtalyan M. Performance of functionally graded plates under localised transverse loading. Compos Struct. 2012;94(7):2254-62. [doi:10.1016/j.compstruct.2012.02.012]10.1016/j.compstruct.2012.02.012Search in Google Scholar

[11] Mindlin RD. Equations of high frequency vibrations of thermo piezoelectric crystal plates. Int J Solids Struct. 1974;10(6):625-37. [doi:10.1016/0020-7683(74)90047-X]10.1016/0020-7683(74)90047-XSearch in Google Scholar

[12] Chandrasekharairh DS. A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech. 1988;71:39-49.10.1007/BF01173936Search in Google Scholar

[13] Lebon G. A generalized theory of thermoelasticity. J Tech Phys. 1982;23:37-46.Search in Google Scholar

[14] Mindlin RD. On the equations of motion of piezoelectric crystals. In: Muskilishivili NI, Editor. Problems of continuum mechanics. Philadelphia:SIAM, 1961. p.282-290.Search in Google Scholar

[15] Rao SS, Sunar M. Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA J. 1993;31(7):1280-6. [doi:10.2514/3.11764]10.2514/3.11764Search in Google Scholar

[16] Selvamani R, Poongkothai J, Jayakumar S. Hygro thermal vibration characteristics of an axisymmetric piezoelctric functionally graded rod. AIP Conf Proc. 2019;2166:020026.10.1063/1.5131613Search in Google Scholar

[17] Poongkothai J, Selvamani R. Thermo electro environment effects in a dispersion of functionally graded thermo piezo electric rod coupled with inviscid fluid. AIP Conf Proc. 2019;2166:020027. [doi:10.1063/1.5131614]10.1063/1.5131614Search in Google Scholar

[18] Dube GP, Kapuria S, Dumir PC. Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending. Int J Mech Sci. 1996;38(11):1161-77. [doi:10.1016/0020-7403(96)00020-3].10.1016/0020-7403(96)00020-3Search in Google Scholar

[19] Ding HJ, Wang HM, Chen WQ. Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems. Int J Mech Sci. 2003 Jun;45(6-7):1029-51. [doi:10.1016/j.ijmecsci.2003.09.005]10.1016/j.ijmecsci.2003.09.005Search in Google Scholar

[20] Ootao Y, Tanigawa Y. Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere. Compos Struct. 2007 Dec;81(4):540-54. [doi:10.1016/j.compstruct.2006.10.002]10.1016/j.compstruct.2006.10.002Search in Google Scholar

[21] Wu CP, Huang SE. Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method. Comput Mater Contin. 2009;12(3):251-281.Search in Google Scholar

[22] Akbarzadeh AH, Chen ZT. Heat conduction in one-dimensional functionally graded media based on the dual-phase-lag theory. Proc Inst Mech Eng C J Mech Eng. Sci. 2013, 227(4), 744-759. [doi:10.1177/0954406212456651]10.1177/0954406212456651Search in Google Scholar

[23] Abouelregal AE, Zenkour AM. Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating. IJST-T Mech Eng. 2014;38(M2):321-35. [doi:10.22099/IJSTM.2014.2498]Search in Google Scholar

[24] Elhagary MA. A Two-Dimensional Generalized Thermoelastic Diffusion Problem for a Thick Plate Subjected to Thermal Loading Due to Laser Pulse. J Therm Stresses. 2014;37(12):1416-32.10.1080/01495739.2014.937256Search in Google Scholar

[25] Abbas AI, Kumar R, Kaushal S. Interaction due to thermal source in micropolar thermoelastic diffusion medium. J Comput Theor Nanosci. 2015;12(8):1780-6.10.1166/jctn.2015.3958Search in Google Scholar

[26] He TH, Cao L, Li S. Dynamic response of a piezoelectric rod with thermal relaxation. J Sound Vib. 2007;306(3-5):897–907.10.1016/j.jsv.2007.06.018Search in Google Scholar

[27] Babaei MH, Chen ZT. Transient thermo piezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source. Arch Appl Mech. 2010;80(7):803-13. [doi:10.1007/s00419-009-0342-x]10.1007/s00419-009-0342-xSearch in Google Scholar

[28] Ma Y, He TH. Dynamic response of a generalized piezoelectric-thermoelastic problem under fractional order theory of thermoelasticity. Mech Adv Mater Struct. 2016;23(10):1173-80. [doi:10.1080/15376494.2015.1068397]10.1080/15376494.2015.1068397Search in Google Scholar

[29] Othman MI, Hilal MI, Elmaklizi YD. The effect of gravity and diffusion on micropolar thermoelasticity with temperature-dependent elastic medium under G–N theory. Mech Mech Eng. 2017;21(3):657–77.Search in Google Scholar

[30] Zenkour AM. Wave propagation of a gravitated piezothermoelastic half-space via a refined multi-phase-lags theory, mechanics of advanced materials and structures. Mech Adv Mater Struct. 2020;27(22):1923-34. [doi:10.1080/15376494.2018.1533057]10.1080/15376494.2018.1533057Search in Google Scholar

[31] Zenkour AM, Kutbi MA. Multi thermal relaxations for thermodiffusion problem in a thermoelastic half-space Int J Heat Mass Transf. 2019;143:118568. [doi:1016/j.ijheatmasstransfer.2019.118568]10.1016/j.ijheatmasstransfer.2019.118568Search in Google Scholar

[32] Sharma JN, Kumar M. Plane harmonic waves in piezo thermo elastic materials. Indian J Eng Mater Sci. 2000;7(5):434-42.Search in Google Scholar

[33] Othman MI, Hasona WM, Abd-Elaziz EM. Effect of rotation on micro-polar generalized thermoelasticity with two-temperature using a dual-phase-lag model. Can J Phys. 2014;92(2):149-158.10.1139/cjp-2013-0398Search in Google Scholar

[34] Othman MI. A Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermoelasticity. J Therm Stresses. 2002;25(11):1027-45. [doi:10.1080/01495730290074621]10.1080/01495730290074621Search in Google Scholar

[35] Othman MI, Abbas IA. Effect of rotation on a magneto-thermoelastic homogeneous isotropic hollow cylinder with energy dissipation using finite element method. J Comput Theor Nanosci. 2015;12:2399-404. [doi:]10.1166/jctn.2015.4039Search in Google Scholar

[36] Sharma JN, Kumar PK, Mishra KC. Dynamic response of functionally graded cylinders due to time-dependent heat flux. Meccanica. 2016;51:139-154.10.1007/s11012-015-0191-3Search in Google Scholar

[37] Sharma JN, Kumar PK, Mishra C. Analysis of free vibrations in axisymmetric functionally graded thermo elastic cylinders. Acta Mech. 2014;225(6):1581-1594.10.1007/s00707-013-1010-3Search in Google Scholar

[38] Ebrahimi F, Dabbagh A. Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems. Waves Random Complex Media. 2018;31(1):1–21. [doi:10.1080/17455030.2018.1558308].10.1080/17455030.2018.1558308Search in Google Scholar

[39] Pradhan SC, Phadikar JK. Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys Lett A. 2009;373(11):1062–9. [doi:10.1016/j.physleta.2009.01.030].10.1016/j.physleta.2009.01.030Search in Google Scholar

[40] Reddy JN. Analysis of functionally graded plates. Int J Numer Methods Eng. 2000;47(1-3):663–84.10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8Search in Google Scholar

Received: 2021-07-24
Accepted: 2021-11-29
Published Online: 2022-01-24

© 2022 Poongkothai Jeyaraman et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 4.6.2023 from
Scroll to top button