Accessible Requires Authentication Published by De Gruyter September 26, 2014

A Splitting Method for Numerical Simulation of Free Surface Flows of Incompressible Fluids with Surface Tension

Kirill D. Nikitin, Maxim A. Olshanskii, Kirill M. Terekhov and Yuri V. Vassilevski


The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface advection and fluid inertia, an implicit update of viscous terms and the projection of velocity into the subspace of divergence-free functions. We derive several conservation properties of the method and a suitable energy estimate for numerical solutions. Under certain assumptions on the smoothness of the free surface and its evolution, this leads to a stability result for the numerical method. Efficient computations of free surface flows of incompressible viscous fluids need several other ingredients, such as dynamically adapted meshes, surface reconstruction and level set function re-initialization. These enabling techniques are discussed in the paper as well. The properties of the method are illustrated with a few numerical examples. These examples include analytical tests and the oscillating droplet benchmark problem.

Funding source: RFBR

Award Identifier / Grant number: 12-01-00283, 12-01-33084, 14-01-00830

Funding source: Russian President grant

Award Identifier / Grant number: MK 7159.2013.1

Funding source: Russian Science Foundation

Award Identifier / Grant number: 14-11-00434

Received: 2014-7-11
Revised: 2014-8-18
Accepted: 2014-8-26
Published Online: 2014-9-26
Published in Print: 2015-1-1

© 2015 by De Gruyter