Abstract
We consider elliptic problems with complicated, discontinuous diffusion tensor
A Interpolation Estimates
Lemma A.1.
Let
Then if
A proof can be found in [1]. Note that inequality (A.1) also holds for vector-valued functions.
Theorem A.2 (Marcinkiewicz interpolation theorem).
Let S be a
linear mapping from
for all
for all
For a proof we refer to [12, Theorem 9.8].
References
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. 140, Elsevier, Amsterdam, 2003. Search in Google Scholar
[2] I. Babuška, U. Banerjee and J. E. Osborn, Generalized finite element methods – Main ideas, results and perspective, Int. J. Comput. Methods 1 (2004), no. 1, 67–103. 10.1142/S0219876204000083Search in Google Scholar
[3] I. Babuška, G. Caloz and J. E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), no. 4, 945–981. 10.1137/0731051Search in Google Scholar
[4] I. Babuška and J. M. Melenk, The partition of unity method, Int. J. Numer. Meths. Engng. 40 (1997), no. 4, 727–758. 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-NSearch in Google Scholar
[5] I. Babuška and J. E. Osborn, Can a finite element method perform arbitrarily badly?, Math. Comp. 69 (2000), no. 230, 443–462. 10.1090/S0025-5718-99-01085-6Search in Google Scholar
[6] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. Part I: Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294–2312. 10.1137/S003614290139874XSearch in Google Scholar
[7] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. Part II: General unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313–2332. 10.1137/S0036142901398751Search in Google Scholar
[8] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Search in Google Scholar
[9] A. Bonito, R. A. Devore and R. H. Nochetto, Adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Numer. Anal. 51 (2013), no. 6, 3106–3134. 10.1137/130905757Search in Google Scholar
[10] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, New York, 1999. Search in Google Scholar
[11] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review, Commun. Comput. Phys. 2 (2007), no. 3, 367–450. Search in Google Scholar
[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Search in Google Scholar
[13] V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. 10.1007/978-3-642-84659-5Search in Google Scholar
[14] M. Križek and P. Naittaanmäki, Superconvergence phenomenon in the finite element method arising from averaging of gradients, Numer. Math. 45 (1984), 105–116. 10.1007/BF01379664Search in Google Scholar
[15] J. M. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1–4, 289–314. 10.1016/S0045-7825(96)01087-0Search in Google Scholar
[16]
N. G. Meyers,
An
[17] T. Preusser, M. Rumpf, S. Sauter and L. O. Schwen, 3D Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients, SIAM J. Sci. Comput. 33 (2011), no. 5, 2115–2143. 10.1137/100791750Search in Google Scholar
[18] S. I. Repin, A Posteriori Error Estimates for Partial Differential Equations, Walter de Gruyter, Berlin, 2008. 10.1515/9783110203042Search in Google Scholar
[19] S. I. Repin, T. S. Samrowski and S. A. Sauter, Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces, ESAIM Math. Model. Numer. Anal. 46 (2012), 1389–1405. 10.1051/m2an/2012007Search in Google Scholar
[20]
C. G. Simader and H. Sohr,
The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains: A New Approach to Weak, Strong and
[21] T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg. 181 (2000), no. 1–3, 43–69. 10.1016/S0045-7825(99)00072-9Search in Google Scholar
[22] T. Strouboulis, K. Copps and I. Babuška, The generalized finite element method: An example of its implementation and illustration of its performance, Int. J. Numer. Meths. Engng. 47 (2000), no. 8, 1401–1417. 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8Search in Google Scholar
[23] T. Strouboulis, K. Copps and I. Babuška, The generalized finite element method, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32–33, 4081–4193. 10.1016/S0045-7825(01)00188-8Search in Google Scholar
[24]
M. Weymuth,
Adaptive local basis for elliptic problems with
[25] Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput. 26 (2005), 1192–1213. 10.1137/S1064827503402837Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston