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Abstract:A standard finite differencemethod on a uniformmesh is used to solve a time-fractional convection-
diffusion initial-boundary value problem. Such problems typically exhibit a mild singularity at the initial
time t = 0. It is proved that the rate of convergence of the maximum nodal error on any subdomain that is
bounded away from t = 0 is higher than the rate obtained when the maximum nodal error is measured over
the entire space-time domain. Numerical results are provided to illustrate the theoretical error bounds.
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1 Introduction
In this paper, we examine the convergence rate of numerical approximations to a time-fractional convection-
diffusion problem using a standard finite difference method on a uniform mesh. Initial-boundary value
problems of this type, where the time derivative is fractional, have solutions that are mildly singular at the
initial time t = 0; that is, their temporal derivatives are unbounded on the closed space-time domain, but
are bounded on any subdomain that is bounded away from t = 0. It is shown in [9, 10] that the case of
solutions with bounded temporal derivatives on the closed space-time domain is very special and that the
weakly singular solutions examined here are much more typical of how solutions to this class of problems
behave. As one would expect, the rate of convergence of the computed numerical approximations is affected
adversely by the presence of large temporal derivatives at t = 0.

This paper is a companion paper to [10], where it was shown that the convergence rate of the same finite
difference scheme on a uniform mesh was O(N−α), where α ∈ (0, 1) is the order of the fractional derivative
and themesh spacing in time isO(N−1). Results related to themain result in [10] are available in [7, 8], using a
finite element framework. In contrast to [10], we shall prove here for the same scheme on a uniformmesh that
the convergence rate of the numerical solution is O(N−1) on any subdomain that is bounded away from t = 0.

Our analysis is carried out in the discrete L∞ norm; an analogous convergence result in the L2 norm was
derived in [4]. Using an alternative formulation of the continuous problem, the phenomenon of higher-order
convergence at some fixed distance away from the initial singularity is examined in [6] for a homogeneous
version of (2.1) in the case of non-smooth initial data.
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Notation. In this paper C denotes a generic constant that depends on the data of the boundary value prob-
lem (2.1) but is independent of T and of anymesh used to solve (2.1) numerically. Note that C can take differ-
ent values in different places. For all x ∈ ℝ the ceiling function ⌈x⌉ is the smallest integer greater than or equal
to x. For any continuous function z : Q → ℝwith Q ⊂ ℝ2 and anymesh function znm with n = 0, 1, . . . , N and
m = 0, 1, . . . ,M, we set

‖z‖ := max
(x,t)∈Q̄

|z(x, t)| and ‖zn‖ := max
0≤m≤M

|znm|.

2 The Continuous Problem
Consider the initial-boundary value problem

Lu := Dαt u − p(x)∂
2u
∂x2

+ q(x)∂u
∂x

+ r(x)u = f(x, t) (2.1a)

for (x, t) ∈ Q := (0, l) × (0, T], with initial and boundary conditions

u(0, t) = u(l, t) = 0 for t ∈ (0, T], (2.1b)
u(x, 0) = ϕ(x) for x ∈ [0, l]. (2.1c)

Here 0 < α < 1, p(x) ≥ p0 > 0 on [0, l], the functions p(x), q(x) and r(x) are smooth on [0, l] and are assumed
to satisfy the constraint

r(x) − q
�(x) + p��(x)

2 ≥ 0 for (x, t) ∈ Q. (2.1d)

The initial condition ϕ is also smooth on [0, l] and the function f is smooth on Q̄. Furthermore, in (2.1a)
Dαt denotes the Caputo fractional derivative which is defined [1] by

Dαt g(x, t) := [J1−α(
∂g
∂t )]

(x, t) for 0 ≤ x ≤ l, 0 < t ≤ T,

where

(J1−αg)(x, t) := [ 1
Γ(1 − α)

t

∫
s=0

(t − s)−αg(x, s) ds] for (x, t) ∈ Q̄

is the Riemann–Liouville fractional integral operator of order 1 − α.
There is no loss of generality in assuming homogeneous boundary conditions in (2.1b), because inho-

mogeneous boundary conditions are easily made homogeneous by a simple change of variable.
Under the transformation

y(x, t) := u(x, t)√ p(0)
p(x)

e−
1
2 ∫

x
0
q(s)
p(s) ds ,

problem (2.1) becomes

Dαt y − p(x)
∂2y
∂x2

+ r1(x)y = f1(x, t) for (x, t) ∈ Q := (0, l) × (0, T], (2.2a)

y(0, t) = y(l, t) = 0 for t ∈ (0, T], (2.2b)

y(x, 0) = ϕ1(x) := ϕ(x)√
p(0)
p(x)

e−
1
2 ∫

x
0
q(s)
p(s) ds for x ∈ [0, l], (2.2c)

where

r1(x) := r(x) −
(q�(x) + p��(x))

2 +
(q(x) + p�(x))2

4p , (2.2d)

f1(x, t) := f(x, t)√
p(0)
p(x)

e−
1
2 ∫

x
0
q(s)
p(s) ds . (2.2e)
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Note that no first-order derivative in space appears in (2.2a), and (2.1d) implies that r1 ≥ 0. Consequently,
(2.2) belongs to the class of problems analysed in [10]. In [10] it was assumed that p(x) was a positive con-
stant, but the analysis of [10] can be extended to the case of a smooth variable positive coefficient p(x). Thus
after placing suitable regularity and compatibility conditions on the data of (2.2), one can invoke [10, Theo-
rem2.1] to conclude that (2.2) has aunique solution ywhosederivatives satisfy certain bounds. Transforming
back to the original problem (2.1), under certain conditions on its data one obtains the following bounds on
the derivatives of u:

!!!!!!!
∂ku
∂xk

(x, t)
!!!!!!!
≤ C for k = 0, 1, 2, 3, 4, (2.3a)

!!!!!!!
∂ℓu
∂tℓ

(x, t)
!!!!!!!
≤ C(1 + tα−ℓ) for ℓ = 1, 2, (2.3b)

for all (x, t) ∈ [0, l] × (0, T].
In [10, Theorem 2.1] the estimates in (2.3) are proved assuming that ϕ1 ∈ D(L5/2), (f1)( ⋅ , t) ∈ D(L5/2),

(f1)t( ⋅ , t) and (f1)tt( ⋅ , t) are in D(L1/2) for each t ∈ (0, T] and

‖(f1)( ⋅ , t)‖L5/2 + ‖(f1)t( ⋅ , t)‖L1/2 + tρ‖(f1)tt( ⋅ , t)‖L1/2 ≤ C1

for all t ∈ (0, T] and some constant ρ < 1, where C1 is a constant independent of t and ‖ ⋅ ‖Lγ is the norm
associated with the vector space D(Lγ). This space is defined by

D(Lγ) := {g ∈ L2(0, l) :
∞

∑
i=1
λ2γi |(g, ψi)|2 < ∞}, γ ≥ 0,

where ( ⋅ , ⋅ ) is the inner product in the Hilbert space L2(0, l) and {(λi , ψi) : i = 1, 2, . . . } are the eigenvalues
and normalised eigenfunctions of the Sturm–Liouville two-point boundary value problem

Lψi := −pψ��
i + cψi = λiψi on (0, l), ψi(0) = ψi(l) = 0.

3 The Discrete Problem
The solution of problem (2.1) is approximated by the solution of a finite difference scheme on a mesh
{(xm , tn) : m = 0, 1, . . . ,M, n = 0, 1, . . . , N}, that is uniform in both space and time. Let M and N be posi-
tive integers. Set h = l

M and xm := mh for m = 0, 1, . . . ,M. Set tn = nτ = n TN for n = 0, 1, . . . , N. The nodal
approximation to the solution u computed at the mesh point (xm , tn) is denoted by unm.

The first and second-order spatial derivatives are discretised using standard approximations:

∂u
∂x

(xm , tn) ≈ D0
xunm :=

unm+1 − u
n
m−1

2h ,

∂2u
∂x2

(xm , tn) ≈ δ2xumn :=
unm+1 − 2unm + unm−1

h2
.

The Caputo fractional derivative Dαt u, which can be written as

Dαt u(xm , tn) =
1

Γ(1 − α)

n−1
∑
k=0

tk+1
∫
s=tk

(tn − s)−α
∂u(xm , s)

∂s
ds,

is approximated by the classical L1 approximation

DαNu
n
m := 1

Γ(1 − α)

n−1
∑
k=0

uk+1m − ukm
τ

tk+1
∫
s=tk

(tn − s)−α ds

=
1

Γ(2 − α)

n−1
∑
k=0

(uk+1m − ukm)dn−k , (3.1a)
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where
dk := k1−α − (k − 1)1−α , k ≥ 1. (3.1b)

Thus, we approximate (2.1) by the discrete problem

LM,Nunm := DαNu
n
m − p(xm)δ2xunm + q(xm)D0

xunm + r(xm)unm = f(xm , tn) for 1 ≤ m ≤ M − 1, 1 ≤ n ≤ N, (3.2a)
un0 = unM = 0 for 0 < n ≤ N, (3.2b)
u0m = ϕ(xm) for 0 ≤ m ≤ M. (3.2c)

This discretisation of (2.1) is standard.
To ensure the stability of the discrete operator LM,N by imposing the correct sign pattern in the associated

matrix, we make the nonrestrictive assumption that N satisfies

l‖q‖
2p0

< N.

After some minor modifications in the proof of [10, Theorem 5.2] to handle the term q(xm)D0
xunm, it follows

that the solution unm of scheme (3.2) satisfies the error bound

max
(xm ,tn)∈Q̄

|u(xm , tn) − unm| ≤ C(h2 + N−α) (3.3)

for some constant C. In particular, the method has the low order of convergence O(N−α) in time when α is
small. In the present paper we shall consider the rate of convergence in a subdomain [0, l] × [κ, T], where κ
is a fixed positive value.

4 Error Analysis
The structure of our error analysis is the standardfinite difference technique of estimating the truncation error
at eachmesh point, then invoking a stability argument to derive an error bound for the computed solution unm.
In this analysis the truncation error bound (4.2) indicates that the truncation error decreases as one moves
further away from the initial time t = 0. The stability bound (4.5) shows that the error at any discrete time
level depends on a weighted sum of the truncation errors at all the previous time levels.

The estimate of the truncation error in space is standard: using (2.3a), one gets

∂u
∂x

(xm , tn) = D0
xu(xm , tn) + O(h2),

∂2u
∂x2

(xm , tn) = δ2xu(xm , tn) + O(h2).
(4.1)

The truncation error in time is more tricky to estimate and this is done in the next lemma.

Lemma 1. Assume that u satisfies (2.3). Then there exists a positive constant C such that for each mesh point
(xm , tn) ∈ Q one has

|(DαN − Dαt )u(xm , tn)| ≤ Cn−min{2−α,α+1}. (4.2)

Proof. We modify the argument of [10, Lemma 5.1]. By (3.1a) and the definition of Dαt , for each mesh point
(xm , tn) ∈ Q one has

(DαN − Dαt )u(xm , tn) =
n−1
∑
k=0

Tnk ,

where for n = 1, 2, . . . , N and k = 0, 1, . . . , n − 1we define the truncation error in the kth time cell [tk , tk+1]
to be

Tnk :=
1

Γ(1 − α)

tk+1
∫
s=tk

(tn − s)−α[
u(xm , tk+1) − u(xm , tk)

τ
−
∂u
∂s

(xm , s)] ds. (4.3)
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The following four bounds are established in [10, equations (5.9), (5.10), (5.11) and (5.14)]:
⌈ n2 ⌉−1

∑
k=1

|Tnk| ≤ Cn−(α+1) for 1 ≤ k < n − 1, (4.4a)

n−2
∑
k=⌈ n2 ⌉

|Tnk| ≤ Cn−(2−α) for 1 ≤ k < n − 1, (4.4b)

|T10| ≤ C, (4.4c)
|Tn,n−1| ≤ Cn−(2−α). (4.4d)

It remains to bound |Tn0| for n > 1. We sharpen the bound [10, (5.12)] of this term. An integration by
parts in (4.3) yields

Tn0 =
−α

Γ(1 − α)

t1

∫
s=0

(tn − s)−α−1(ϕ − ψ)(xm , s) ds,

where
ϕ(xm , s) := s[

u(xm , t1) − u(xm , 0)
τ ] and ψ(xm , s) := u(xm , s) − u(xm , 0).

For 0 ≤ s ≤ τ, it is clear that |ϕ(xm , s)| ≤ |u(xm , τ) − u(xm , 0)| and |ψ(xm , s)| ≤ ∫
τ
0 |ut(xm , t)| dt. Thus, we see

that

|ϕ(xm , s)| + |ψ(xm , s)| ≤ 2
τ

∫
0

|ut(xm , t)| dt ≤ C
τ

∫
0

(1 + tα−1) dt ≤ Cτα .

Hence

|Tn0| ≤ Cτα
t1

∫
s=0

(tn − s)−α−1 ds ≤ Cτα[(tn − t1)−α − t−αn ] = C[(n − 1)−α − n−α] ≤ Cn−(α+1),

by the Mean Value Theorem. Combine this bound with (4.4) to complete the proof.

Observe that min{2 − α, α + 1} > 1 in (4.2) for all values of α ∈ (0, 1); thus this bound is sharper than the
truncation error bound of O(n−α) proved in [10, Lemma 5.1]. This improvement is critical in establishing our
main result later.

Next, we derive some new information about the stability constants that appear in [10, Section 4]. It
follows from [10, Lemma 4.2] that the computed solution unm of (3.2) satisfies

‖u(xm , tn) − unm‖ ≤ ταΓ(2 − α)
n
∑
j=1
σn−j‖(LM,N(u(xm , tj))j − uj‖ (4.5)

for n = 1, 2, . . . , N, where the positive weights σi are defined for i = 0, 1, 2, . . . , n − 1 by the recurrence
relation

σ0 := 1, σi :=
i
∑
k=1

(dk − dk+1)σi−k for i = 1, 2, . . . . (4.6)

Note that when the mesh is uniform, the weights θn,j in [10, Lemma 4.2] are the same as the weights σn−j
defined in (4.6).

Lemma 2. The coefficients σi satisfy σi < (i + 1)α−1 for i = 1, 2, . . . .

Proof. First, σ1 = (d1 − d2)σ0 = 2 − 21−α < 2−1+α as 0.5w + 2w−1 − 2 > 0 for all w ∈ (1, 2), so the lemma is
true when i = 1. The proof is completed by induction. Assume that σj < (j + 1)α−1 for j = 1, 2, . . . , i − 1. We
want to prove that σi < (i + 1)α−1. It is easy to check that dk − dk+1 > 0 for all k. Using this inequality and the
inductive hypothesis, we require the inequality

i
∑
k=1

(dk − dk+1)(i + 1 − k)α−1 < (i + 1)α−1,

which is established in [5, Lemma 3.2].
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The next result, which is a variant of [10, Lemma 4.3], bounds a weighted sum of the σn−j that will be used
in the proof of Theorem 4.

Lemma 3. Let the parameter β satisfy β > 1. Then, for n = 1, 2, . . . , N, one has

τα
n
∑
j=1
j−βσn−j ≤ CN−1Ttα−1n .

Proof. By Lemma 2, we have

τα
n
∑
j=1
j−βσn−j ≤ τα

n
∑
j=1
j−β(n + 1 − j)α−1 ≤ τα[(n2)

α−1 ⌈ n2 ⌉

∑
j=1
j−β + (n2)

−(β−α) n
∑

j=⌈ n2 ⌉+1
j−α(n + 1 − j)α−1]. (4.7)

But for s ≥ j − 1 and j ≤ n, one has

(n + 1 − s)α−1 ≥ (n + 2 − j)α−1 ≥ 2α−1(n + 1 − j)α−1.

Hence,

n
∑

j=⌈ n2 ⌉+1
j−α(n + 1 − j)α−1 ≤

n
∑

j=⌈ n2 ⌉+1
(n + 1 − j)α−1

j

∫
s=j−1

s−α ds

≤
n
∑

j=⌈ n2 ⌉+1
21−α

j

∫
s=j−1

(n + 1 − s)α−1s−α ds

≤ 21−α
n+1

∫
s=0

(n + 1 − s)α−1s−α ds

= 21−αΓ(α)Γ(1 − α),

by [1, Theorem D.6]. Substituting this inequality into (4.7) and using tn = nτ and β > 1, we get

τα
n
∑
j=1
j−βσn−j ≤ Cταnα−1

⌈ n2 ⌉

∑
j=1
j−β + Cταn−(β−α) ≤ Cταnα−1 + Cταn−(β−α) = Ctα−1n (τ + τn−(β−1)) ≤ Ctα−1n N−1T.

This completes the proof.

We can now prove our main result.

Theorem 4. Assume that u satisfies (2.3). Then, for n = 1, 2, 3, . . . , N, the solution unm of scheme (3.2) satisfies

max
0≤m≤M

|u(xm , tn) − unm| ≤ C(Tαh2 + TN−1tα−1n ) (4.8)

for some constant C.

Proof. Fix (xm , tn) ∈ Q. By (4.1) and Lemma 1, the truncation error at (xm , tn) satisfies

‖(LM,N(u(xm , tn))n − un)‖ ≤ C(h2 + n−min{2−α,1+α}).

By (4.5) we then obtain

max
0≤m≤M

|u(xm , tn) − unm| ≤ Cτα
n
∑
j=1
h2σn−j + Cτα

n
∑
j=1
j−min{2−α,1+α}σn−j .

Invoking Lemma 3 (with β = min{2 − α, 1 + α}) for the j−min{2−α,1+α} term and [10, Lemma 4.3] (with β = 0)
for the term involving h2, we obtain (4.8).

The bound in (4.8) implies that for any fixed κ > 0 one has

max
(xm ,tn)∈Q̄∩{tn≥κ>0}

|(xm , tn) − unm| ≤ CTα(h2 + N−1). (4.9)

That is, on any subdomain that is bounded away from t = 0, we observe an improved rate of convergence in
time compared with the rate of convergence (in time) of N−α on Q̄ that is given by (3.3).
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5 Numerical Results
In this section we give numerical results for the numerical method (3.2) applied to two particular examples
from the problem class (2.1). In the first example the exact solution of the problem is known; in the second
example it is unknown, sowe estimate the order of convergence using the double-mesh principle [2]. In these
numerical experimentswe always takeN = M. Hence the bounds in (3.3) and (4.8) imply that the spatial error
term Ch2 will be dominated by the temporal error term CN−α or CN−1.

Example 5.1. Consider the constant coefficient homogeneous problem

Dαt u −
∂2u
∂x2

+
∂u
∂x

= 0 for (x, t) ∈ Q = (0, π) × (0, 1],

with initial condition u(x, 0) = e x
2 sin x, 0 < x < π, and boundary conditions u(0, t) = u(π, t) = 0, 0 ≤ t ≤ 1.

The exact solution of this problem is

u(x, t) = Eα(−1.25tα)e
x
2 sin x,

where Eα is the Mittag-Leffler function which is defined [1] by

Eα(z) :=
∞

∑
k=0

zk

Γ(αk + 1) .

In Figure 1 we display the computed solutions with scheme (3.2) for α = 0.4, 0.8 and N = M = 32 and we
observe that the solution has an initial layer at t = 0, which becomes sharper as the parameter α decreases.

For Example 5.1 we computed the maximum errors

eM,N := max
(xm ,tn)∈Q� |u(xm , tn) − unm|

and the orders of convergence
pM,N := log2(

eM,N
e2M,2N
),

where Q� can be the entire domain Q̄ or the subdomain Q̄∗ := [0, π] × [0.1, 1]. The numerical results in Q̄ (see
Table 1) show that scheme (3.2) is O(N−α) convergent there (which agrees with [10, Theorem 5.2]), while it
is O(N−1) convergent in the subdomain Q̄∗ (see Table 2), which indicates that the error bound (4.9) is sharp.
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Figure 1. Example 5.1: Computed solutions with scheme (3.2) for N = M = 32.
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α N = M = 128 N = M = 256 N = M = 512 N = M = 1024 N = M = 2048
0.4 8.438E-2 6.714E-2 5.282E-2 4.120E-2 3.191E-2

0.330 0.346 0.359 0.368
0.6 3.759E-2 2.512E-2 1.672E-2 1.109E-2 7.342E-3

0.581 0.588 0.592 0.595
0.8 1.121E-2 6.401E-3 3.666E-3 2.102E-3 1.206E-3

0.809 0.804 0.803 0.802

Table 1. Example 5.1: Maximum errors and orders of convergence for scheme (3.2) in the domain Q̄.

α N = M = 128 N = M = 256 N = M = 512 N = M = 1024 N = M = 2048
0.4 1.024E-2 4.966E-3 2.436E-3 1.214E-3 6.050E-4

1.044 1.027 1.005 1.005
0.6 1.300E-2 6.432E-3 3.190E-3 1.595E-3 7.965E-4

1.015 1.012 1.000 1.002
0.8 9.844E-3 5.123E-3 2.644E-3 1.361E-3 6.963E-4

0.942 0.954 0.959 0.966

Table 2. Example 5.1: Maximum errors and orders of convergence for scheme (3.2) in the subdomain Q̄∗.
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Figure 2. Example 5.1: Log-log plot of the error bound N−1tα−1n (⬦) and the maximum errors max0≤m≤M |u(xm , tn) − unm | (∘) at
each time level t = tn , n = 1, 2, . . . , N, generated by scheme (3.2) for N = M = 100.

Considering the convergence in time, identified by the factor tα−1n in the error bound (4.8), the error
maxm |u(xm , tn) − unm| is compared with the error bound N−1tα−1n in Figure 2, for α = 0.2 and α = 0.8. These
plots indicate that the exponent α − 1 in the error bound is sharp for small values of α. However, in the case
of larger values of α close to one, the maximum error decreases at a faster rate than α − 1, as tn increases.

Example 5.2. Consider the variable coefficient inhomogeneous problem

Dαt u −
∂2u
∂x2

+ (1 + x2)∂u
∂x

+ (1 + x)u =
4
π2
x(π − x) for (x, t) ∈ Q, (5.1a)

with Q = (0, π) × (0, 1] and

u(x, 0) = 0 for 0 < x < π,
u(0, t) = u(π, t) = 0 for 0 ≤ t ≤ 1.

(5.1b)

Figure 3 displays the computed solution for α = 0.4, 0.8 and N = M = 64 and we observe that the solution
again exhibits an initial layer at t = 0.
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(b) α = 0.8

Figure 3. Example 5.2: Computed solutions with scheme (3.2) for N = M = 64.

The exact solution of Example 5.2 is unknown and we shall estimate the order of convergence using
the two-mesh principle [2]. Let unm be the computed solution with scheme (3.2) on the mesh {(xm , tn)}
form = 0, 1, . . . ,M, n = 0, 1, . . . , N. To estimate the order of convergence,we compute a newapproximation
z
n
2
m/2 using the same scheme defined on the finer mesh {(xm/2, tn/2)} for m = 0, 1, . . . , 2M, n = 0, 1, . . . , 2N,
where xm+1/2 := 1

2 (xm+1 + xm) and tn+1/2 := 1
2 (tn+1 + tn)/2. We then compute the two-mesh differences

dM,N := max
(xm ,tn)∈Q� |unm − znm|

and hence the estimated orders of convergence

qM,N := log2(
dM,N
d2M,2N
).

Tables 3 and 4 give the maximum two-mesh differences and their corresponding orders of convergence
for Example 5.2 in the domain Q̄ and the subdomain Q̄∗. The numerical results in both cases are again in
agreement with Theorem 4: the order of convergence improves from O(N−α) on Q̄ to O(N−1) on Q̄∗.

α N = M = 128 N = M = 256 N = M = 512 N = M = 1024 N = M = 2048
0.4 1.031E-2 8.673E-3 7.123E-3 5.740E-3 4.558E-3

0.250 0.284 0.311 0.333
0.6 4.935E-3 3.338E-3 2.234E-3 1.486E-3 9.857E-4

0.564 0.579 0.588 0.593
0.8 1.661E-3 9.441E-4 5.368E-4 3.060E-4 1.748E-4

0.815 0.815 0.811 0.808

Table 3. Example 5.2: Maximum two-mesh differences and orders of convergence for scheme (3.2) in the domain Q̄.

α N = M = 128 N = M = 256 N = M = 512 N = M = 1024 N = M = 2048
0.4 5.849E-4 2.783E-4 1.351E-4 6.711E-5 3.337E-5

1.072 1.042 1.010 1.008
0.6 1.148E-3 5.457E-4 2.628E-4 1.291E-4 6.356E-5

1.073 1.054 1.025 1.023
0.8 1.335E-3 6.752E-4 3.387E-4 1.703E-4 8.531E-5

0.984 0.995 0.992 0.997

Table 4. Example 5.2: Maximum two-mesh differences and orders of convergence for scheme (3.2) in the subdomain Q̄∗.
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In [10], numerical results were given for the particular case of a fractional reaction-diffusion equation
(i.e., with q ≡ 0 in (2.1)) showing that the scheme also converges with order α when the whole domain is
considered. Additional numerical results that illustrate the improved rate of convergence away from t = 0 are
given in [3].
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