Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 14, 2019

Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem

Fleurianne Bertrand, Daniele Boffi and Rolf Stenberg

Abstract

This paper derives a posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem. We discuss a reconstruction in the standard H01-conforming space for the primal variable of the mixed Laplace eigenvalue problem and compare it with analogous approaches present in the literature for the corresponding source problem. In the case of Raviart–Thomas finite elements of arbitrary polynomial degree, the resulting error estimator constitutes a guaranteed upper bound for the error and is shown to be local efficient. Our reconstruction is performed locally on a set of vertex patches.

MSC 2010: 65N25; 65N30

References

[1] M. Ainsworth, A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 189–204. 10.1137/06067331XSearch in Google Scholar

[2] M. Ainsworth and J. T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993), no. 1, 23–50. 10.1007/BF01385738Search in Google Scholar

[3] T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), no. 211, 943–972. Search in Google Scholar

[4] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32. 10.1051/m2an/1985190100071Search in Google Scholar

[5] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991), 641–787. 10.1016/S1570-8659(05)80042-0Search in Google Scholar

[6] R. Becker and S. Mao, An optimally convergent adaptive mixed finite element method, Numer. Math. 111 (2008), no. 1, 35–54. 10.1007/s00211-008-0180-8Search in Google Scholar

[7] R. Becker, S. Mao and Z. Shi, A convergent nonconforming adaptive finite element method with quasi-optimal complexity, SIAM J. Numer. Anal. 47 (2010), no. 6, 4639–4659. 10.1137/070701479Search in Google Scholar

[8] F. Bertrand, D. Boffi and R. Stenberg, A posteriori error analysis for the mixed laplace eigenvalue problem: Investigations for the BDM-element, to appear. 10.1002/pamm.201900155Search in Google Scholar

[9] F. Bertrand, M. Moldenhauer and G. Starke, A posteriori error estimation for planar linear elasticity by stress reconstruction, Comput. Methods Appl. Math. (2018), 10.1515/cmam-2018-0004. 10.1515/cmam-2018-0004Search in Google Scholar

[10] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. 10.1017/S0962492910000012Search in Google Scholar

[11] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013. 10.1007/978-3-642-36519-5Search in Google Scholar

[12] D. Boffi, D. Gallistl, F. Gardini and L. Gastaldi, Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form, Math. Comp. 86 (2017), no. 307, 2213–2237. 10.1090/mcom/3212Search in Google Scholar

[13] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem, IMA J. Numer. Anal. 37 (2017), no. 4, 1710–1732. Search in Google Scholar

[14] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, A posteriori error estimates for Maxwell’s eigenvalue problem, J. Sci. Comput. 78 (2019), no. 2, 1250–1271. 10.1007/s10915-018-0808-5Search in Google Scholar

[15] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651–672. 10.1090/S0025-5718-07-02080-7Search in Google Scholar

[16] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. 10.1016/j.camwa.2013.12.003Search in Google Scholar PubMed PubMed Central

[17] C. Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comp. 75 (2006), no. 255, 1033–1042. 10.1090/S0025-5718-06-01829-1Search in Google Scholar

[18] C. Carstensen and H. Rabus, An optimal adaptive mixed finite element method, Math. Comp. 80 (2011), no. 274, 649–667. 10.1090/S0025-5718-2010-02397-XSearch in Google Scholar

[19] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. 10.1137/07069047XSearch in Google Scholar

[20] L. Chen, M. Holst and J. Xu, Convergence and optimality of adaptive mixed finite element methods, Math. Comp. 78 (2009), no. 265, 35–53. 10.1090/S0025-5718-08-02155-8Search in Google Scholar

[21] M. Dauge, https://perso.univ-rennes1.fr/monique.dauge/benchmax.html. Search in Google Scholar

[22] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. 10.1007/978-3-642-22980-0Search in Google Scholar

[23] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. 10.1137/0733054Search in Google Scholar

[24] J. Douglas, Jr. and J. E. Roberts, Mixed finite element methods for second order elliptic problems, Mat. Apl. Comput. 1 (1982), no. 1, 91–103. Search in Google Scholar

[25] R. G. Durán, L. Gastaldi and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci. 9 (1999), no. 8, 1165–1178. 10.1142/S021820259900052XSearch in Google Scholar

[26] R. G. Durán, C. Padra and R. Rodríguez, A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. Models Methods Appl. Sci. 13 (2003), no. 8, 1219–1229. 10.1142/S0218202503002878Search in Google Scholar

[27] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal. 53 (2015), no. 2, 1058–1081. 10.1137/130950100Search in Google Scholar

[28] D. Gallistl, An optimal adaptive FEM for eigenvalue clusters, Numer. Math. 130 (2015), no. 3, 467–496. 10.1007/s00211-014-0671-8Search in Google Scholar

[29] F. Gardini, Mixed approximation of eigenvalue problems: A superconvergence result, M2AN Math. Model. Numer. Anal. 43 (2009), no. 5, 853–865. 10.1007/978-3-540-34288-5_17Search in Google Scholar

[30] J. Gedicke and A. Khan, Arnold-Winther mixed finite elements for Stokes eigenvalue problems, SIAM J. Sci. Comput. 40 (2018), no. 5, A3449–A3469. 10.1137/17M1162032Search in Google Scholar

[31] A. Hannukainen, R. Stenberg and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem, Numer. Math. 122 (2012), no. 4, 725–769. 10.1007/s00211-012-0472-xSearch in Google Scholar

[32] K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems, Appl. Math. Comput. 218 (2012), no. 24, 11820–11831. 10.1016/j.amc.2012.04.084Search in Google Scholar

[33] V. A. Kozlov, V. G. Maz’ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monogr. 52, American Mathematical Society, Providence, 1997. Search in Google Scholar

[34] P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485–509. 10.1137/0720033Search in Google Scholar

[35] C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), no. 256, 1659–1674. 10.1090/S0025-5718-06-01872-2Search in Google Scholar

[36] P. Morin, R. H. Nochetto and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. 10.1137/S0036142999360044Search in Google Scholar

[37] R. H. Nochetto, K. G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction, Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin (2009), 409–542. 10.1007/978-3-642-03413-8_12Search in Google Scholar

[38] R. H. Nochetto and A. Veeser, Primer of adaptive finite element methods, Multiscale and Adaptivity: Modeling, Numerics and Applications, Lecture Notes in Math. 2040, Springer, Heidelberg (2012), 125–225. 10.1007/978-3-642-24079-9_3Search in Google Scholar

[39] P. Oswald, Multilevel Finite Element Approximation. Theory and Applications, B. G. Teubner, Stuttgart, 1994. 10.1007/978-3-322-91215-2Search in Google Scholar

[40] W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269. 10.1090/qam/25902Search in Google Scholar

[41] R. Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151–167. 10.1051/m2an/1991250101511Search in Google Scholar

[42] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. 10.1007/s10208-005-0183-0Search in Google Scholar

[43] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numer. Math. Sci. Comput., Oxford University, Oxford, 2013. 10.1093/acprof:oso/9780199679423.001.0001Search in Google Scholar

[44] M. Vohralík, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal. 45 (2007), no. 4, 1570–1599. 10.1137/060653184Search in Google Scholar

[45] M. Vohralík, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), no. 272, 2001–2032. 10.1090/S0025-5718-2010-02375-0Search in Google Scholar

Received: 2019-06-19
Accepted: 2019-06-20
Published Online: 2019-08-14
Published in Print: 2020-04-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow