Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 9, 2021

Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering

Bernhard Endtmayer ORCID logo, Ulrich Langer ORCID logo and Thomas Wick ORCID logo


We derive efficient and reliable goal-oriented error estimations, and devise adaptive mesh procedures for the finite element method that are based on the localization of a posteriori estimates. In our previous work [B. Endtmayer, U. Langer and T. Wick, Two-side a posteriori error estimates for the dual-weighted residual method, SIAM J. Sci. Comput. 42 2020, 1, A371–A394], we showed efficiency and reliability for error estimators based on enriched finite element spaces. However, the solution of problems on an enriched finite element space is expensive. In the literature, it is well known that one can use some higher-order interpolation to overcome this bottleneck. Using a saturation assumption, we extend the proofs of efficiency and reliability to such higher-order interpolations. The results can be used to create a new family of algorithms, where one of them is tested on three numerical examples (Poisson problem, p-Laplace equation, Navier–Stokes benchmark), and is compared to our previous algorithm.

Funding source: Austrian Science Fund

Award Identifier / Grant number: P 29181

Funding statement: This work has been supported by the Austrian Science Fund (FWF) under the grant P 29181 “Goal-Oriented Error Control for Phase-Field Fracture Coupled to Multiphysics Problems”.


The first two authors would like to thank “Institute of Applied Mathematics” from the Leibniz University Hannover for the organization of their visit in January 2020. Furthermore, the authors would like to express their thanks to the anonymous referees for their helpful hints and valuable suggestions.


[1] B. Achchab, S. Achchab and A. Agouzal, Some remarks about the hierarchical a posteriori error estimate, Numer. Methods Partial Differential Equations 20 (2004), no. 6, 919–932. 10.1002/num.20016Search in Google Scholar

[2] A. Agouzal, On the saturation assumption and hierarchical a posteriori error estimator, Comput. Methods Appl. Math. 2 (2002), no. 2, 125–131. 10.2478/cmam-2002-0007Search in Google Scholar

[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin and D. Wells, The deal.II library, version 9.0, J. Numer. Math. 26 (2018), no. 4, 173–183. 10.1515/jnma-2018-0054Search in Google Scholar

[4] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Lectures in Math. ETH Zürich, Birkhäuser, Basel, 2003. 10.1007/978-3-0348-7605-6Search in Google Scholar

[5] R. E. Bank, A. Parsania and S. Sauter, Saturation estimates for hp-finite element methods, Comput. Vis. Sci. 16 (2013), no. 5, 195–217. 10.1007/s00791-015-0234-2Search in Google Scholar

[6] R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993), no. 4, 921–935. 10.1137/0730048Search in Google Scholar

[7] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. 10.1090/S0025-5718-1985-0777265-XSearch in Google Scholar

[8] R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods, ENUMATH’97, World Scientific, Singapore (1998), 621–637. Search in Google Scholar

[9] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. 10 (2001), 1–102. 10.1017/S0962492901000010Search in Google Scholar

[10] F. A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188–1204. 10.1137/0733059Search in Google Scholar

[11] F. Bozorgnia, Convergence of inverse power method for first eigenvalue of p-Laplace operator, Numer. Funct. Anal. Optim. 37 (2016), no. 11, 1378–1384. 10.1080/01630563.2016.1211682Search in Google Scholar

[12] M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul. 1 (2003), no. 2, 221–238. 10.1137/S1540345902410482Search in Google Scholar

[13] C. Carstensen, D. Gallistl and J. Gedicke, Justification of the saturation assumption, Numer. Math. 134 (2016), no. 1, 1–25. 10.1007/s00211-015-0769-7Search in Google Scholar

[14] P. G. Ciarlet, The Finite Element Method For Elliptic Problems, Classics Appl. Math. 40, Society for Industrial and Applied Mathematics, Philadelphia, 2002. 10.1137/1.9780898719208Search in Google Scholar

[15] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004), no. 2, 196–199. 10.1145/992200.992206Search in Google Scholar

[16] A. De Rossi, Saturation assumption and finite element method for a one-dimensional model, RGMIA Res. Rep. Coll. 5 (2002), Aricle ID 13. Search in Google Scholar

[17] P. Di Stolfo, A. Rademacher and A. Schröder, Dual weighted residual error estimation for the finite cell method, J. Numer. Math. 27 (2019), no. 2, 101–122. 10.1515/jnma-2017-0103Search in Google Scholar

[18] W. Dörfler and R. H. Nochetto, Small data oscillation implies the saturation assumption, Numer. Math. 91 (2002), no. 1, 1–12. 10.1007/s002110100321Search in Google Scholar

[19] M. Duprez, S. P. A. Bordas, M. Bucki, H. P. Bui, F. Chouly, V. Lleras, C. Lobos, A. Lozinski, P.-Y. Rohan and S. Tomar, Quantifying discretization errors for soft tissue simulation in computer assisted surgery: A preliminary study, Appl. Math. Model. 77 (2020), 709–723. 10.1016/j.apm.2019.07.055Search in Google Scholar

[20] B. Endtmayer, U. Langer, I. Neitzel, T. Wick and W. Wollner, Multigoal-oriented optimal control problems with nonlinear PDE constraints, Comput. Math. Appl. 79 (2020), no. 10, 3001–3026. 10.1016/j.camwa.2020.01.005Search in Google Scholar

[21] B. Endtmayer, U. Langer and T. Wick, Multigoal-oriented error estimates for non-linear problems, J. Numer. Math. 27 (2019), no. 4, 215–236. 10.1515/jnma-2018-0038Search in Google Scholar

[22] B. Endtmayer, U. Langer and T. Wick, Two-side a posteriori error estimates for the dual-weighted residual method, SIAM J. Sci. Comput. 42 (2020), no. 1, A371–A394. 10.1137/18M1227275Search in Google Scholar

[23] B. Endtmayer and T. Wick, A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems, Comput. Methods Appl. Math. 17 (2017), no. 4, 575–599. 10.1515/cmam-2017-0001Search in Google Scholar

[24] C. Erath, G. Gantner and D. Praetorius, Optimal convergence behavior of adaptive FEM driven by simple ( h - h / 2 ) -type error estimators, Comput. Math. Appl. 79 (2020), no. 3, 623–642. 10.1016/j.camwa.2019.07.014Search in Google Scholar

[25] A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761–A1791. 10.1137/120896918Search in Google Scholar

[26] L. Failer and T. Wick, Adaptive time-step control for nonlinear fluid-structure interaction, J. Comput. Phys. 366 (2018), 448–477. 10.1016/ in Google Scholar

[27] M. Feischl, D. Praetorius and K. G. van der Zee, An abstract analysis of optimal goal-oriented adaptivity, SIAM J. Numer. Anal. 54 (2016), no. 3, 1423–1448. 10.1137/15M1021982Search in Google Scholar

[28] S. Ferraz-Leite, C. Ortner and D. Praetorius, Convergence of simple adaptive Galerkin schemes based on h - h / 2 error estimators, Numer. Math. 116 (2010), no. 2, 291–316. 10.1007/s00211-010-0292-9Search in Google Scholar

[29] R. Hartmann, Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. Sci. Comput. 31 (2008), no. 1, 708–731. 10.1137/070710962Search in Google Scholar

[30] J. G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids 22 (1996), no. 5, 325–352. 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-YSearch in Google Scholar

[31] M. Holst and S. Pollock, Convergence of goal-oriented adaptive finite element methods for nonsymmetric problems, Numer. Methods Partial Differential Equations 32 (2016), no. 2, 479–509. 10.1002/num.22002Search in Google Scholar

[32] B. Kawohl and J. Horák, On the geometry of the p-Laplacian operator, Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 4, 799–813. 10.3934/dcdss.2017040Search in Google Scholar

[33] U. K̈öcher, M. P. Bruchhäuser and M. Bause, Efficient and scalable data structures and algorithms for goal-oriented adaptivity of space–time FEM codes, SoftwareX 10 (2019), Article ID 100239. 10.1016/j.softx.2019.100239Search in Google Scholar

[34] S. Korotov, P. Neittaanmäki and S. Repin, A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery, J. Numer. Math. 11 (2003), no. 1, 33–59. 10.1163/156939503322004882Search in Google Scholar

[35] M. Maier and R. Rannacher, A duality-based optimization approach for model adaptivity in heterogeneous multiscale problems, Multiscale Model. Simul. 16 (2018), no. 1, 412–428. 10.1137/16M1105670Search in Google Scholar

[36] G. Mallik, M. Vohralík and S. Yousef, Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, J. Comput. Appl. Math. 366 (2020), Article ID 112367. 10.1016/ in Google Scholar

[37] S. A. Mattis and B. Wohlmuth, Goal-oriented adaptive surrogate construction for stochastic inversion, Comput. Methods Appl. Mech. Engrg. 339 (2018), 36–60. 10.1016/j.cma.2018.04.045Search in Google Scholar

[38] C. Mehlmann and T. Richter, A goal oriented error estimator and mesh adaptivity for sea ice simulations, preprint (2020), 10.1016/j.ocemod.2020.101684Search in Google Scholar

[39] D. Meidner, R. Rannacher and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math. 17 (2009), no. 2, 143–172. 10.1515/JNUM.2009.009Search in Google Scholar

[40] D. Meidner and T. Richter, Goal-oriented error estimation for the fractional step theta scheme, Comput. Methods Appl. Math. 14 (2014), no. 2, 203–230. 10.1515/cmam-2014-0002Search in Google Scholar

[41] G. Nabh, On high order methods for the stationary incompressible Navier–Stokes equations, PhD thesis, Heidelberg University, 1998. Search in Google Scholar

[42] J. T. Oden, Adaptive multiscale predictive modelling, Acta Numer. 27 (2018), 353–450. 10.1017/S096249291800003XSearch in Google Scholar

[43] R. Rannacher and J. Vihharev, Adaptive finite element analysis of nonlinear problems: Balancing of discretization and iteration errors, J. Numer. Math. 21 (2013), no. 1, 23–61. 10.1515/jnum-2013-0002Search in Google Scholar

[44] R. Rannacher, A. Westenberger and W. Wollner, Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error, J. Numer. Math. 18 (2010), no. 4, 303–327. 10.1515/jnum.2010.015Search in Google Scholar

[45] T. Richter and T. Wick, Variational localizations of the dual weighted residual estimator, J. Comput. Appl. Math. 279 (2015), 192–208. 10.1016/ in Google Scholar

[46] M. Schäfer, S. Turek, F. Durst, E. Krause and R. Rannacher, Benchmark computations of laminar flow around a cylinder, Flow Simulation with High-Performance Computers II, Vieweg, Wiesbaden (1996), 547–566. 10.1007/978-3-322-89849-4_39Search in Google Scholar

[47] E. H. van Brummelen, S. Zhuk and G. J. van Zwieten, Worst-case multi-objective error estimation and adaptivity, Comput. Methods Appl. Mech. Engrg. 313 (2017), 723–743. 10.1016/j.cma.2016.10.007Search in Google Scholar

[48] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Adv. Numer. Math., Wiley-Teubner, Stuttgart, 1996. Search in Google Scholar

[49] S. Weißer and T. Wick, The dual-weighted residual estimator realized on polygonal meshes, Comput. Methods Appl. Math. 18 (2018), no. 4, 753–776. 10.1515/cmam-2017-0046Search in Google Scholar

[50] T. Wick, Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Comput. Mech. 57 (2016), no. 6, 1017–1035. 10.1007/s00466-016-1275-1Search in Google Scholar

[51] T. Wick, Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers, Radon Ser. Comput. Appl. Math. 28, De Gruyter, Berlin, 2020. 10.1515/9783110497397Search in Google Scholar

Received: 2020-03-20
Revised: 2020-08-31
Accepted: 2020-12-04
Published Online: 2021-01-09
Published in Print: 2021-04-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston