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Abstract: The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s
method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type
beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust
behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they
are also tested with numerical experiments.
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1 Introduction
The numerical study of the deformation of thin beams and plates is a widespread problem in elasticity theory
and engineering practice since such elastic structures regularly appear in several real applications; see, e.g.,
[2, 12, 16–18]. These models generally lead to fourth-order equations. The linear models, which are basic in
engineering applications, can be used only for small deformations. The most popular linear beam model is
the Euler–Bernoulli beam: if the elasticmodulus E and themoment of inertia I are constant, then one obtains
a fourth-order ODEwith constant coefficient. The analogous two-dimensional model for a thin plate involves
the biharmonic operator. The obtained simple models read as

DuIV = q and D∆2u = q, (1.1)

where D = EI is the flexural rigidity and q is the distributed load. However, such linear models are no more
valid unless the deformation can be considered as infinitesimal. In more realistic models of engineering
structures involving larger deformations, nonlinear behaviour has to be taken into account. Some of these
models have been introduced in [9, 10], leading to so-called Gao beam models; see [11, 14] for more recent
applications. Gao beam theory respects the Euler–Bernoulli hypothesis, but involves a geometrical type of
nonlinearity [15, 19]. The involved nonlinearity requires the application of efficient solvers for the nonlinear
system arising for the finite element approximation (FEM).

The goal of this paper is to present various types of such iterative solvers in the setting of the finite element
method (FEM) and, in particular, to show the robust behaviour of these methods, i.e., convergence indepen-
dently of the mesh parameters. The presentation of these methods, based on a Hilbert space framework,
includes the proper forms of the Sobolev gradient iteration and of Newton’s method adapted to the given
beam problem. Further, based on the authors’ recent results [4, 5] (see also [13]), a quasi-Newton/variable
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preconditioning method is presented as an intermediate version between the above two. Here the balance
between speed and cost is achieved with auxiliary operators chosen via spectral equivalence.

The paper first summarizes the corresponding theory in Section 2. Section 3 contains the main results.
After the weak formulation of the problem, the necessary properties of the corresponding operators are
proved in the used finite element subspaces, and robust convergence is derived. Then the results of numerical
experiments are presented. A brief conclusion is given in the closing section.

2 Preliminaries

2.1 Nonlinear Gao Beam Models

For the description of the bending of a beam resting on a foundation, to treat deformations beyond the
infinitesimal region, models have been developed in [9, 11] derived from the presence of lateral stress. The
following model considers a beam with classical Winkler foundation, which is a widespread concept in civil
engineering, also with a profound effect on the field of adhesion mechanics; see [7]. Here the deflection u of
the beam is described by the following equation:

EIuIV − Eα(u)2u + kFu = f in J := [0, b], (2.1)

with the following constants: E > 0 is the elastic modulus, I > 0 is themoment of inertia for the beam’s cross-
section, α = 3h(1 − ν2), where h is thickness measured from the axis and ν > 0 denotes the Poisson ratio,
and kF > 0 is the foundation stiffness coefficient. Further, the transverse distributed load function is denoted
by q, and f = (1 − ν2)q.

A slightly modified version of the above equation, involved, e.g., in contact problems, is

EIuIV − Eα(u)2u + Pμu = f in J := [0, b], (2.2)

where P is the axial force, assumed to be below the Euler critical load PEcr, and μ = (1 + ν)(1 − ν2).

2.2 Some Iterative Methods

Here we summarize some iterative methods in a Hilbert space framework. Since we will apply them to our
given beam equation, we formulate these theorems under a common set of conditions that can be verified
for the beam problem. For more details, we refer to the monograph [8] and the authors’ recent papers [4, 5]
(see also [13]). In this section, let H be a real Hilbert space and F : H → H a nonlinear operator which has
a bihemicontinuous Gâteaux derivative.

Assumptions 2.2. We formulate the following properties for F.
(i) (Symmetry.) For any u ∈ H, the operator F(u) is self-adjoint.
(ii) (Regularity.) There exists a constant λ > 0 such that

λ‖h‖2 ≤ ⟨F(u)h, h⟩ (for all u, h ∈ H). (2.3)

(iii) (Upper growth.) There exists a continuous increasing function Λ : ℝ+ → ℝ+ such that

⟨F(u)h, h⟩ ≤ Λ(‖u‖)‖h‖2 (for all u, h ∈ H). (2.4)

(iv) (Local Lipschitz.) There exists a continuous increasing function L : ℝ+ → ℝ+ such that

‖F(u) − F(v)‖ ≤ L(max{‖u‖, ‖v‖})‖u − v‖ (for all u, h ∈ H).

We wish to solve the operator equation F(u) = 0. Conditions (i)–(ii) imply that there is a unique solution
u∗ ∈ H; see, e.g., [8]. We study three types of iterative methods.
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Theorem 2.1 (Simple Iteration/Gradient Method). Let Assumptions 2.2 (i)–(iii) hold. Let u0 ∈ H be arbitrary
and Λ0 := Λ(‖u0‖ + 1

λ ‖F(u0)‖). Then the sequence defined by

un+1 := un −
2

Λ0 + λ
F(un) (for all n ∈ ℕ)

converges to u∗, namely,

‖un − u∗‖ ≤
1
λ
‖F(u0)‖(

Λ0 − λ
Λ0 + λ
)
n
(for all n ∈ ℕ).

Moreover, in fact, ‖un − u∗‖ ≤ 1
λ ‖F(un)‖ and

‖F(un+1)‖
‖F(un)‖

≤
Λ0 − λ
Λ0 + λ

.

Proof. See [8, Theorem 5.5].

Theorem 2.2 (Newton’s Method). Let Assumptions 2.2 (i), (ii) and (iv) hold. Let u0 be in a properly small neigh-
bourhood of u∗ and L0 := L(‖u0‖ + 2

λ ‖F(u0)‖). Then the sequence defined by

un+1 := un − F(un)−1F(un) (for all n ∈ ℕ)

converges to u∗, that is, ‖un − u∗‖ ≤ 1
λ ‖F(un)‖→ 0 and

‖F(un+1)‖ ≤
L0
2λ2
‖F(un)‖2 (n ∈ ℕ).

Proof. This follows from [8, Theorem 5.9 and Remark 5.17].

The formulation of the third theorem uses the energy ∗-norm ‖v‖∗ := ⟨F(u∗)−1v, v⟩1/2.

Theorem 2.3 (Quasi-Newton/Variable Preconditioning Method). Let Assumptions 2.2 (i)–(iv) hold. Let u0 be
in a sufficiently small neighbourhood of u∗. Let the sequence (un) be defined by

un+1 := un −
2

Mn + mn
B−1n F(un) (n ∈ ℕ),

where 0 < mn ≤ Mn and the symmetric linear operators Bn : H → H satisfy

mn⟨Bnh, h⟩ ≤ ⟨F(un)h, h⟩ ≤ Mn⟨Bnh, h⟩ (n ∈ ℕ, h ∈ H). (2.5)

We require (mn) to be positively bounded from below and (Mn) bounded from above. Then (un) converges to u∗,
that is, ‖un − u∗‖ ≤ 1

λ ‖F(un)‖→ 0 and

lim sup ‖F(un+1)‖∗
‖F(un)‖∗

≤ lim sup Mn − mn
Mn + mn

< 1. (2.6)

Proof. This follows from [4, Theorem 2.1] and [5, Theorem 2.5], which extend [8, Theorem 5.16] to the upper
non-uniform case (2.4).

We note that a reasonable requirement is to outperform the simple iteration, for which one should choosemn
and Mn closer than the original spectral bounds of F(un).

Remark 2.1. (i) (Efficiency.) Obviously, as is well known, Newton’s method is the fastest and the simple
iteration is the slowest of the abovemethods (quadratic speed vs linear speed), but Newton’s method is more
costly. The quasi-Newton method is an intermediate version, where the variable preconditioners Bn may be
cheaper than the full linearized operators; still, its convergence can be superlinear when the lim sup in (2.6)
equals 0.

(ii) (Damped versions, global convergence.) The local convergence of the above versions of the Newton
and quasi-Newton methods can be made global by damping with proper parameters τn ≤ 1. These are not
formulated here for simplicity. The convergence speed in the limit is the same as in the above versions.
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2.3 Estimates in Sobolev spaces

Here let Ω ⊂ Rd be a bounded domain. In most of the paper, we will let d = 1 and Ω = J (the studied interval).
The following statements, which are well known (see, e.g., [1]), will be useful later.

Proposition 2.1 (Generalized Hölder Inequality). If the numbers pi ≥ 1 satisfy ∑si=1 1
pi = 1, then, for any func-

tions ui ∈ Lpi (Ω), we have ∫Ω∏
s
i=1|ui| ≤ ∏

s
i=1‖ui‖Lpi .

Proposition 2.2 (Sobolev Embedding). Let 1 ≤ p (if d ≤ 2) or 1 ≤ p ≤ 2d
d−2 (if d > 2). Then

H1
0(Ω) ⊂ Lp(Ω), ‖v‖Lp ≤ Cp‖∇v‖L2 (for all v ∈ H1

0(Ω)) (2.7)

for some constant Cp > 0 independent of v.

3 Numerical Solution of the Beam Problem

3.1 Weak Formulation and Finite Elements

We rewrite (2.1) by dividing with EI and letting

β := α
3I , k := kF

EI
, g := f

EI
;

further, we impose clamped boundary conditions. Then our problem becomes

uIV − β((u)3) + ku = g, u(0) = u(0) = u(b) = u(b) = 0. (3.1)

The weak formulation uses the Sobolev space H2(J); moreover, using the boundary conditions, we work
in the space

H2
0(J) = {u ∈ H

2(J) : u(0) = u(0) = u(b) = u(b) = 0},

which has the standard inner product and corresponding norm

⟨u, v⟩H2
0
:=

b

∫
0

uv, ‖u‖2H2
0
=

b

∫
0

(u)2. (3.2)

Then the weak solution of problem (3.1) is defined as u∗ ∈ H2
0(J) satisfying

b

∫
0

(u∗ v + β(u∗)3v + ku∗v) =
b

∫
0

gv (for all v ∈ H2
0(J)). (3.3)

The well-posedness of the problem will be discussed in the next section. The weak solution minimizes the
energy

E(u) :=
b

∫
0

(
1
2 (u
)2 +

β
4 (u
)4 +

k
2u

2 − gu)

in H2
0(J).
The finite element method (FEM) can be used to solve (3.3) numerically. Let Vh ⊂ H2

0(J) be a given FEM
subspace. Then we seek for uh ∈ Vh satisfying

b

∫
0

(uh v
 + β(uh)

3v + kuhv) =
b

∫
0

gv (for all v ∈ Vh). (3.4)

The formulation and properties of the problem will be given for a general FEM subspace Vh ⊂ H2
0(J). Later,

for the realization, we will specify Vh to consist of suitable spline functions.
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Rearranging (3.3) and using Riesz representation, one can define an operator F : Vh → Vh satisfying

⟨F(u), v⟩H2
0
=

b

∫
0

(uv + β(u)3v + kuv − gv) (for all v ∈ Vh) (3.5)

so that (3.3) simply becomes an equation
F(u) = 0 (3.6)

in the space Vh (also equipped with the H2
0 inner product). Then, using standard calculations (see, e.g.,

[8, Chapter 6.1]), one can derive that F has a Gâteaux derivative satisfying

⟨F(u)h, v⟩H2
0
=

b

∫
0

(hv + 3β(u)2hv + khv) (for all u, h, v ∈ Vh), (3.7)

further, that F is bihemicontinuous. In addition, the role of h and v is interchangeable in formula (3.7),which
readily implies the following corollary.

Corollary 3.1. For any u ∈ Vh, the operator F(u) is self-adjoint.

3.2 Properties of the Linearized Operator

The following ellipticity properties hold.

Proposition 3.1. There exists a continuous increasing function Λ : ℝ+ → ℝ+, independently of h, such that

‖h‖2H2
0
≤ ⟨F(u)h, h⟩H2

0
≤ Λ(‖u‖H2

0
)‖h‖2H2

0
(for all u, h ∈ Vh). (3.8)

Namely, Λ(t) = 1 + kC42 + 3βC
4
4t2.

Proof. Owing to (3.7), the quadratic form reads as

⟨F(u)h, h⟩H2
0
=

b

∫
0

((h)2 + 3β(u)2(h)2 + kh2) (for all u, h ∈ Vh).

Since β, k ≥ 0, the first inequality of (3.8) holds.
Furthermore, (2.7) implies that ‖z‖L4 ≤ C4‖z‖L2 = C4‖z‖H2

0
. Thus we have

b

∫
0

3β(u)2(h)2 ≤ 3β‖(u)2‖L2‖(h)2‖L2 = 3β‖u‖2L4‖h
‖2L4 ≤ 3βC

4
4‖u‖

2
H2
0
‖h‖2H2

0
(for all u, h ∈ Vh),

and similarly,

b

∫
0

kh2 = k‖h‖2L2 ≤ kC
2
2‖h
‖2L2 ≤ kC

4
2‖h
‖2L2 = kC

4
2‖h‖

2
H2
0
(for all u, h ∈ Vh);

hence the result follows.

The above shows that Assumptions 2.2 (i)–(ii) hold for problem (3.6). As seen in Section 2.2, this implies
well-posedness.

Corollary 3.2. Problem (3.3) has a unique solution u∗ ∈ H2
0(J); further, for any FEM subspace Vh ⊂ H2

0(J), prob-
lem (3.4) has a unique solution uh ∈ Vh.
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One can also establish local Lipschitz continuity.

Proposition 3.2. There exists a continuous increasing function L : ℝ+ → ℝ+, independently of h, such that

‖F(u) − F(v)‖ ≤ L(max{‖u‖H2
0
, ‖v‖H2

0
})‖u − v‖H2

0
(for all u, h ∈ Vh).

Namely, L(t) = 6C44βt.

Proof. Corollary 3.1 implies the symmetry of F(u) − F(v) for each u, v ∈ Vh; therefore, it is possible to obtain
its norm using its quadratic form,

‖F(u) − F(v)‖ = sup
‖h‖H20
=1
|⟨(F(u) − F(v))h, h⟩| = sup

‖h‖H20
=1



b

∫
0

3β((u)2 − (v)2)(h)2

.

As in the proof of Proposition 3.1 above, we use Proposition 2.1 and the fact that ‖z2‖L2 = ‖z‖2L4 . With
Proposition 2.2, these yield

‖F(u) − F(v)‖ ≤ sup
‖h‖H20
=1
3β‖(u)2 − (v)2‖L2‖(h)2‖L2 ≤ sup

‖h‖H20
=1
3β‖(u)2 − (v)2‖L2C24‖h‖2L2 . (3.9)

Since ‖z‖L2 = ‖z‖H2
0
, this readily entails

‖F(u) − F(v)‖ ≤ 3C24β‖(u)2 − (v)2‖L2 = 3C24β√‖(u − v)2(u + v)2‖L1 . (3.10)

Repeating the technique used in (3.9) gives

√‖(u − v)2(u + v)2‖L1 ≤ √‖(u − v)2‖L2‖(u + v)2‖L2

= ‖u − v‖L4‖u + v‖L4 ≤ C24‖u
 − v‖L2‖u + v‖L2 (3.11)

Combining (3.10)–(3.11) yields

‖F(u) − F(v)‖ ≤ 3C44β‖u − v‖H2
0
‖u + v‖H2

0

Finally, since ‖u + v‖H2
0
≤ ‖u‖H2

0
+ ‖v‖H2

0
≤ 2max(‖u‖H2

0
, ‖v‖H2

0
), this yields

‖F(u) − F(v)‖ ≤ 6C44βmax(‖u‖H2
0
, ‖v‖H2

0
)‖u − v‖H2

0
.

3.3 Finite Elements Using Splines

The straightforward way to implement finite elements for fourth-order beam problems is to use piecewise
cubic splines, that is, Hermitian elements with four degrees of freedom, which satisfy C1-continuity at the
node points. These functions are in H2(J), and accordingly, the integrals in (3.2) are finite. Alternatively, one
could use quadratic B-splines and still achieve C1-continuity.

We apply a uniform mesh, where the piecewise cubic basis functions are constructed below for mesh
parameter h. Two such functions are obtained for each interior node. These nodes are denoted nk, where
k ∈ K := {1, 2, . . . , b/h − 1}, and nk is at location xk = hk.

Let us consider piecewise cubic functions f1, f2 : [−1, 1]→ ℝ, which are defined as

fi(x) =
{
{
{

f∗i (x), x ∈ [0, 1],
(−1)(i−1)f∗i (−x), x ∈ [−1, 0),

(i = 1, 2),

where f∗1 (x) = 2x3 − 3x2 + 1, f∗2 (x) = x3 − 2x2 + x; see Figure 1.
The basis functions are obtained via affine transformations Lk (k ∈ K) such that the domain of Lk(fi) is

[h(k − 1), h(k + 1)] for i = 1, 2.
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x

f1(x)

-1 1

1

0
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f2(x)
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-0.2
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0

-1

Figure 1: Piecewise cubic functions on [−1, 1].

3.4 The Iterative Solvers: Construction, Convergence and Mesh-Independence

Now we come to the main point of the numerical method, which is the iterative solution of the FEM problem
(3.5)–(3.6). We consider the iterative methods of Section 2.2. For notational simplicity, we do not indicate in
which subspace Vh our sequences (un)n∈ℕ run in. In fact, we think of Vh as being fixed.

Construction 3.4. The three recurrences can be summarized as follows:

un+1 := un − σzn , (3.12)

where the function zn ∈ Vh and the constant σ > 0 are defined in the way described below. We note that, for
the Newton and quasi-Newton methods, one formally has to solve an operator equation; further, the quasi-
Newton method will be uniquely defined if we choose proper operators Bn.
∙ Simple iteration/gradient method: zn := F(un), σ := 2

Λ0+λ .
To determine zn, let us write the equality with test functions,

⟨zn , v⟩H2
0
= ⟨F(un), v⟩H2

0
(for all v ∈ Vh).

Here and henceforth, let us define the right-hand side as a functional ℓn, that is, by (3.5),

ℓnv := ⟨F(un), v⟩H2
0
≡

b

∫
0

(un v + β(un)3v + kunv − gv) (for all v ∈ Vh). (3.13)

Then the zn ∈ Vh is the solution of the auxiliary FEM problem

b

∫
0

zn v = ℓnv (for all v ∈ Vh).

∙ Newton’s method: F(un)zn = F(un), σ := 1.
To determine zn, let us again involve test functions,

⟨F(un)zn , v⟩H2
0
= ⟨F(un), v⟩H2

0
(for all v ∈ Vh).

Using (3.7) and (3.13), zn ∈ Vh is the solution of the auxiliary FEM problem

b

∫
0

(zn v + 3β(un)2znv + kznv) = ℓnv (for all v ∈ Vh).
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∙ Quasi-Newton/variable preconditioning: Bnzn = F(un), σ := 2
Mn+mn

.
Now the equation for zn with test functions is

⟨Bnzn , v⟩H2
0
= ⟨F(un), v⟩H2

0
(for all v ∈ Vh).

Here we propose to choose the operator Bn as an approximation of F(un) such that the term 3β(un)2 is
replaced by proper constants wn > 0: let

⟨Bnh, v⟩H2
0
:=

b

∫
0

(hv + wnhv + khv) (for all v ∈ Vh). (3.14)

That is, by (3.13), zn ∈ Vh is the solution of the auxiliary FEM problem
b

∫
0

(zn v + wnznv + kznv) = ℓnv (for all v ∈ Vh).

It is informative to summarize also the strong versions of the auxiliary problems, which are formal equations
involving fourth derivatives. Namely, let us denote

rn := uIVn − β((un)3) + kun − g.

It is readily seen by integration that (for smooth un)

ℓnv =
b

∫
0

rnv (for all v ∈ Vh).

Using similar formal integration for the left-hand side, the auxiliary equations become the following, where,
in each problem, the boundary conditions are zn(0) = zn(0) = zn(b) = zn(b) = 0:
∙ simple iteration/gradient method: zIVn = rn,
∙ Newton’s method: zIVn − 3β((un)2zn) + kzn = rn,
∙ quasi-Newton/variable preconditioning: zIVn − wnzn + kzn = rn.
That is, the auxiliary problems correspond to the solution of proper linear fourth-order ODEs. In reality, of
course,we consider the FEM solution of theweak versions of these problems,where un is only anH2 function.

Now we derive the convergence of the iterations, based on the properties in Section 3.2. In addition, we
need the spectral equivalence property (2.5) for the above defined operators Bn and F(un). A reasonable
choice of wn is in the range of the function 3βmaxΩ(un)2 that it approximates,

0 ≤ wn ≤ 3βmax(un)2. (3.15)

A convenient choice is the arithmetic mean

wn :=
3β
2 max(un)2. (3.16)

Proposition 3.3. For given un ∈ Vh, let the constant wn satisfy (3.15). Then

mn⟨Bnh, h⟩H2
0
≤ ⟨F(un)h, h⟩H2

0
≤ Mn⟨Bnh, h⟩H2

0
(for all h ∈ Vh),

where
mn =

1
1 + wnC22

, Mn =
3βmax(un)2

wn
. (3.17)

Proof. Firstly, to obtain the upper bound, by (3.7), one can write

⟨F(un)h, h⟩H2
0
=

b

∫
0

((h)2 + 3β(un)2(h)2 + kh2)

≤
b

∫
0

((h)2 + 3βmax
Ω
{(un)2}(h)2 + kh2) (for all h ∈ Vh);
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on the other hand, owing to (3.15), we have 1 ≤ Mn := 3βmaxΩ(un)2
wn

for each n ∈ ℕ; hence

⟨F(un)h, h⟩H2
0
≤ Mn

b

∫
0

((h)2 + wn(h)2 + kh2) = Mn⟨Bnh, h⟩H2
0
(for all h ∈ Vh).

To obtain the lower bound, by (3.14) and Proposition 2.2, we have

⟨Bnh, h⟩H2
0
= ‖h‖2L2 + wn‖h‖2L2 + k‖h‖

2
L2 ≤ (1 + wnC22)‖h

‖2L2 + k‖h‖
2
L2 (for all h ∈ Vh);

writing this back to integral form and adding the term 3β(un)2(h)2 ≥ 0 yields

⟨Bnh, h⟩H2
0
≤

b

∫
0

((1 + wnC22)(h
)2 + 3β(un)2(h)2 + kh2) (for all h ∈ Vh).

This readily entails ⟨Bnh, h⟩H2
0
≤ (1 + wnC22)⟨F(un)h, h⟩H2

0
.

Now we can formulate the convergence results.

Theorem 3.1. The iterative methods, defined in Construction 3.4, provide the following convergence estimates:
∙ simple iteration/gradient method:

‖F(un+1)‖H2
0

‖F(un)‖H2
0

≤
Λ0 − λ
Λ0 + λ

, where Λ0 = 1 + kC42 + 3βC
4
4(‖u0‖ +

1
λ
‖F(u0)‖)

2
,

∙ Newton’s method:
‖F(un+1)‖H2

0

‖F(un)‖2H2
0

≤
L0
2λ2

, where L0 = 6C44β(‖u0‖ +
2
λ
‖F(u0)‖),

∙ quasi-Newton/variable preconditioning: if (3.15) holds, then

lim sup ‖F(un+1)‖∗
‖F(un)‖∗

≤ lim sup Mn − mn
Mn + mn

with the constants in (3.17).
These hold globally for the simple iteration and locally for the Newton and quasi-Newton methods.

Proof. This follows from Theorems 2.1–2.3, Propositions 3.1–3.2 and Proposition 3.3.

Remark 3.1. (a) The estimates in Theorem 3.1 are uniform, i.e., the constant on the right-hand side of the
inequalities aremesh-independent.

(b) Global convergence for the Newton and quasi-Newtonmethods can be achieved via damped versions
(see, e.g., [5, 8] for the abstract theorems), which are not detailed here. In this case, the above estimates are
ultimate, i.e., they hold in lim sup sense also for Newton’s method.

(c) In the above,we considered the iterations on afixedmesh. Themethodsmight be generalized to amul-
tilevel setting to increase the efficiency of preconditioning (see related work in [3, 6]), but such extensions
are beyond the scope of the present paper.

3.5 Generalizations

3.5.1 Other Boundary Conditions

Instead of the rigidly clamped beam in (3.1), one can consider a freely supported beam. Then the first deriva-
tives at the endpoints are replaced by second derivatives, i.e., the problem becomes

uIV − β((u)3) + ku = g, u(0) = u(0) = u(b) = u(b) = 0. (3.18)
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This problem can be posed in the Sobolev spaceH2(J) ∩ H1
0(J), which is endowedwith the same inner product

(3.2) as used in H2
0(J). Hence the calculations can be repeated, and the same convergence results hold as

in Section 3.4. The auxiliary problems are obviously solved with the freely supported boundary conditions
as in (3.18).

3.5.2 A Modified Equation

The above results can also be reproduced for themodified version (2.2). Owing to the fact that the axial force P
is below the Euler critical load PEcr, it follows that the energy functional is uniformly convex (see, e.g., [14]),
which implies that the uniformmonotonicity (2.3) holds. The other conditions remain unchanged; hence the
calculations can be repeated to obtain the same convergence results.

3.5.3 Extension to Plane Problems

For the 2D plate problem in (1.1), the analogue of equation (3.1) is

∆2u − β div(|∇u|2∇u) + ku = g in Ω, u|∂Ω =
∂u
∂ν
∂Ω
= 0

for a thin plate Ω ⊂ R2. The weak solution minimizes the energy

E(u) := ∫
Ω

(
1
2 |D

2u|2 + β4 |∇u|
4 +

k
2u

2 − gu)

in the Sobolev space H2
0(Ω). It is easy to see that our 1D results can be readily extended to this situation. The

problem is posed inH2
0(Ω) endowedwith the inner product ⟨u, v⟩H2

0
:= ∫Ω D

2u : D2v. Themain analytic point
is that the required Sobolev embedding H1

0(Ω) ⊂ L4(Ω) also holds in 2D owing to (2.7). The other used tech-
niques are independent of the dimension of the domain. In the case of the freely supported plate, the bound-
ary conditions become u|∂Ω = ∂2u

∂ν2
∂Ω = 0 and the problem is posed in the Sobolev space H2(Ω) ∩ H1

0(Ω).
Altogether, the calculations can be repeated to obtain the same convergence results as before.

3.6 Numerical Experiments

The model described by (3.1) was used for simulation. The results are presented with the original physical
parameters used in (2.1) for the sake of convenience. The physical and mesh parameters where chosen with
the help of [11, 14].

The investigated problems included steel and concrete beams, with length L = 2m, and we applied con-
tact stiffness k = 3 ⋅ 108 N

m2 . The steel and concrete beams have modulus of elasticity E1 = 2.1 ⋅ 1011 Pa and
E2 = 3 ⋅ 1010 Pa, respectively, and Poisson’s ratio ν1 = 0.3 and ν2 = 0.2, respectively. As second moment of
area, I = 2/3 ⋅ 10−3m4 was used. This results from a rectangular cross-section, namely, the beam height is
h = 0.1m, and the beam width is considered as a unit. The total vertical loadings are
∙ F1 = −1.5 ⋅ 108 N, F2 = −3 ⋅ 108 N, F3 = −5 ⋅ 108 N for the steel beam and
∙ F4 = −1 ⋅ 107 N, F5 = −4 ⋅ 107 N, F6 = −8 ⋅ 107 N for the concrete beam.
These loads are distributed uniformly along the beam, and the distributed force is q = F

L (that is, qi = Fi
L in

the distinct experiments). The number of finite elements is denoted by NE.
The simulations were carried out in Matlab. For all simulations, the initial guess was constant 0, and the

stopping criterion was the relative residual decreased below 10−4. A direct linear solver was used in case of
the obtained linear problems in all iteration steps. For the quasi-Newtonmethod, the suggested choice (3.16)
was used for the preconditioner. It has been found that all the three methods converge and are robust.
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E = E1, ν = ν1 E = E2, ν = ν2
NE q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 3 4 5 3 4 5

80 3 4 5 3 4 5
800 3 4 5 3 4 5

8000 4 4 5 3 4 5

Table 1: Number of iterations using the quasi-Newton method.

E = E1, ν = ν1 E = E2, ν = ν2
NE q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 5 6 9 14 16 26

80 5 6 9 14 16 26
800 5 6 9 14 16 26

8000 5 6 9 14 16 26

Table 2: Number of iterations using the Sobolev gradient method.

E = E1, ν = ν1 E = E2, ν = ν2
NE q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 3 3 4 3 3 4

80 3 3 4 3 3 4
800 3 3 4 3 3 4

8000 3 3 4 3 4 4

Table 3: Number of iterations using the full Newton method.

The constant σ in (3.12)was replaced by different values in an attempt to achieve faster convergence. The
investigation showed that σ = 1 is suitable for allmethods; hence all threemethodswere consideredwith this
constant. Damping was not necessary for these methods.

Tables 1, 2 and 3 show the number of iterations with the quasi-Newton method, the Sobolev gradient
method and the full Newton method, respectively, to illustrate the robustness of the methods.

The total runtimes (i.e., the runtimes of thewhole simulation, not only an individual iteration step) for the
quasi-Newton method, the Sobolev gradient method and the Newton method are denoted by tqN, tg and tN,
respectively. These values were obtained by averaging the total runtimes of multiple simulations for each
parameter combination. Namely, for the cases NE = 8, 80, 800, 8000, the number of simulations used to
measure the total runtimes were 50000, 5000, 500, 50, respectively, and the averages of the measured run-
times were used. We have compared Newton’s method (considered as a standard nonlinear solver) with the
two other ones in Tables 4 and 5.

In Table 4, all of the values tqN/tN are smaller than 1 for the investigated problems, i.e., quasi-Newton
method ismore efficient than full Newtonmethod for the investigatedproblemswith respect to computational
cost. Furthermore, increasing mesh density further improves the relative performance of the quasi-Newton
method, owing to the increasing benefit from the simplification of the stiffness matrix.

In Table 5, one can observe that (especially in the case of coarse meshes, e.g., 8 and 80 elements) the
Sobolev gradientmethodmay underperform the full Newtonmethod in runtimes, e.g., for the concrete beam,
though it is apparently faster for the steel beam. The relative computational cost of Sobolev gradient method
also improves with increasing mesh density. Altogether, the Sobolev gradient method often performs well
due to no assembling required in the steps.

In 10 of the cases under investigation, the quasi-Newton method is the most effective with respect to
computational cost, while the Sobolev gradient method is favoured in the remaining 14 cases.
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E = E1, ν = ν1 E = E2, ν = ν2
NE q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 0.656 0.814 0.739 0.733 0.831 0.757

80 0.570 0.679 0.603 0.654 0.722 0.648
800 0.508 0.586 0.500 0.571 0.611 0.527

8000 0.458 0.454 0.370 0.451 0.362 0.372

Table 4: Comparison of quasi-Newton and full Newton runtimes: the values of tqN/tN.

E = E1, ν = ν1 E = E2, ν = ν2
NE q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 0.567 0.662 0.735 1.377 1.541 1.945

80 0.466 0.541 0.599 1.165 1.328 1.664
800 0.357 0.417 0.440 0.890 0.921 1.114

8000 0.197 0.210 0.196 0.317 0.267 0.456

Table 5: Comparison of Sobolev gradient and full Newton runtimes: the values of tg/tN.

n 1 2 3 4

‖F(un+1)‖∗/‖F(un)‖∗ 0.055 0.052 0.056 0.056
(Mn − mn)/(Mn + mn) 0.333 0.526 0.511 0.512

Table 6: One quasi-Newton iteration.

For one particular case, namely, E = E2, ν = ν2, q = q6, NE = 8000, for the quasi-Newton method, the
apparent fulfilment of Theorem 3.1 is illustrated for each iteration step n in Table 6.

Additional experiments have been carried out to determine whether a change in Poisson’s ratio ν affects
these results. For this task, Poisson’s ratio of the concrete beam was changed to ν = 0.3 and ν = 0.1, while
other parameters were left unchanged. For all methods, it has been found that the robustness result holds
for the new parameter combinations as well; moreover, the corresponding iteration numbers remain almost
unchanged. The relative total runtimes also qualitatively coincided with the original results.

Other experiments included replacing the contact stiffness k of the concrete beam with lower values,
k = 2 ⋅ 107 N

m2 and k = 0 N
m2 , in the latter case, the model effectively lacking contact stiffness. For the large

deformation of these soft models, Gao beammodel (2.1) might not hold due to yielding of the material; how-
ever, the simulations can be carried out. The robustness result holds for these simulations. The supremacy
of the quasi-Newton method over the full Newton method is also sustained, though the Sobolev gradient
method exhibits relative improvement.

One can conclude that all three examined methods are robust, and quasi-Newton method can replace
full Newton method for this nonlinear model. The Sobolev gradient method is very efficient for thousands of
elements and more; otherwise, one should use quasi-Newton method. These coarse meshes appear to be of
significance, as [14] states that 32 elements already suffice for accurate computations.

4 Conclusions
The present paper provides a detailed description of three iterative methods for nonlinear Gao beam mod-
els using finite elements. The description includes the Sobolev gradient method, Newton’s method and
a quasi-Newton method with a recently developed framework for elliptic problems with non-uniformly
monotone bounds. The results of both theoretical and practical work are shown. It has been found that all
three methods are robust for the problems, and a comparison has been made between their behaviour under
varying parameters.
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