Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 15, 2015

Mechanical strain affects some microRNA profiles in pre-oeteoblasts.

Yang Wang , Xianqiong Zou , Yong Guo EMAIL logo , Lu Wang , Yongming Liu , Qiangcheng Zeng and Xizheng Zhang

Abstract

MicroRNAs (miRNAs) are important regulators of cell proliferation, differentiation and function. Mechanical strain is an essential factor for osteoblast proliferation and differentiation. A previous study revealed that a physiological mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz applied once a day for 1 h over 3 consecutive days promoted osteoblast differentiation. However, the mechanoresponsive miRNAs of these osteoblasts were not identified. In this study, we applied the same mechanical tensile strain to in vitro cultivated mouse MC3T3-E1 pre-osteoblasts and identified the mechanoresponsive miRNAs. Using miRNA microarray and qRT-PCR assays, the expression patterns of miRNAs were evaluated and 5 of them were found to be significantly different between the mechanical loading group and the control group: miR-3077-5p, 3090-5p and 3103-5p were significantly upregulated and miR-466i-3p and 466h-3p were downregulated. Bioinformatics analysis revealed possible target genes for these differentially expressed miRNAs. Some target genes correlated with osteoblast differentiation. These findings indicated that the mechanical strain changed the expression levels of these miRNAs. This might be a potential regulator of osteoblast differentiation and responses to mechanical strain.

References

1. Gordeladze, J.O., Djouad, F., Brondello, J.M., Noël. D., Richard, D.I., Apparailly, F. and Jorgensen, C. Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol. Sin. 30 (2009) 1369-1384. DOI: 10.1038/aps.2009.143.10.1038/aps.2009.143Search in Google Scholar PubMed PubMed Central

2. Neve, A., Corrado, A. and Cantatore, F.P. Osteocytes: central conductors of bone biology in normal and pathological conditions. Acta Physiol. 204 (2012) 317-330. DOI: 10.1111/j.1748-1716.2011.02385.x.10.1111/j.1748-1716.2011.02385.xSearch in Google Scholar PubMed

3. Chung, E. and Rylander, M.N. Response of a preosteoblastic cell line to cyclic tensile stress conditioning and growth factors for bone tissue engineering. Tissue Eng. 18 (2011) 397-410. DOI: 10.1089/ ten.tea.2010.0414.Search in Google Scholar

4. Lim, J.Y., Loiselle, A.E., Lee, J.S., Zhang, Y., Salvi, J.D. and Donahue, H.J. Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J. Orthop. Res. 29 (2011) 1627-1633. DOI: 10.1002/jor.21441.10.1002/jor.21441Search in Google Scholar PubMed PubMed Central

5. Lin, G.L. and Hankenson, K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 112 (2011) 3491-3501. DOI: 10.1002/jcb.23287.10.1002/jcb.23287Search in Google Scholar PubMed PubMed Central

6. Jacobsa, C., Grimma, S., Ziebartb, T., Walterb, C. and Wehrbeina, H. Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Arch. Oral Biol. 58 (2013) 896-904. DOI: 10.1016/j.archoralbio.2013.01.009.10.1016/j.archoralbio.2013.01.009Search in Google Scholar PubMed

7. Kaneuji, T., Nogami, S., Ariyoshi, W., Nishihara, T. and Takahashi, T. Regulatory effect on osteoclastogenesis of mechanical strain-loaded osteoblasts. J. Oral Maxillofac. Surg. 40 (2011) 1215-1215. DOI: 10.1016/j.ijom.2011.07.640.10.1016/j.ijom.2011.07.640Search in Google Scholar

8. Rumney, R., Sunters, A., Reilly, G. and Gartland, A. Application of multiple forms of mechanical loading to human osteoblasts reveals increased ATP release in response to fluid flow in 3D cultures and differential regulation of immediate early genes. J. Biomech. 45 (2012) 549-554. DOI: 10.1016/j.jbiomech.2011.11.036.10.1016/j.jbiomech.2011.11.036Search in Google Scholar PubMed PubMed Central

9. Vimalraj, S. and Selvamurugan, N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr. Issues Mol. Biol. 15 (2012) 7-18.Search in Google Scholar

10. Taipaleenmäki, H., Hokland, L.B., Chen, L., Kauppinen, S. and Kassem, M. Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur. J. Endocrinol. 166 (2012) 359-371. DOI: 10.1530/EJE-11-0646.10.1530/EJE-11-0646Search in Google Scholar PubMed

11. Fang , Y . and Gao, W. Roles of microRNAs during prostatic tumorigenesis and tumor progression. Oncogene 33 (2013) 135-147. DOI: 10.1038/onc.2013.54. 10.1038/onc.2013.54Search in Google Scholar PubMed

12. Cheung, K.C., Sposito, N, Stumpf, P.S., Wilson, D.I., Sanchez-Elsner, T. and Oreffo, R.C. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by downregulating SMAD2 and SMAD3. PloS One 9 (2014) e98063. DOI: 10.1371/journal.pone.0098063.10.1371/journal.pone.0098063Search in Google Scholar PubMed PubMed Central

13. Huang, J., Zhao, L., Xing, L. and Chen, D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28 (2010) 357-364. DOI: 10.1002/stem.288.10.1002/stem.288Search in Google Scholar PubMed PubMed Central

14. Ivey, K.N. and Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell 7 (2010) 36-41. DOI: 10.1016/ j.stem.2010.06.012.Search in Google Scholar

15. Taipaleenmäki, H., Hokland, L.B., Chen, L., Kauppinen, S. and Kassem, M. Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur. J. Endocrinol. 166 (2012) 359-371. DOI: 10.1530/EJE-11-0646.10.1530/EJE-11-0646Search in Google Scholar PubMed

16. Liu, L., Guo, Y., Wan, Z., Shi, C., Li, L., Li, R., Hao, Q., Li, H., Zhang, X. Effects of phytoestrogen a-ZAL and mechanical stimulation proliferation, osteoblastic differentiation, and OPG/RANKL expression in MC3T3-E1 pre-osteoblasts. Cell. Mol. Bioeng. 5 (2012) 427-439. DOI:10.1007/ s12195-012-0244-9.10.1007/s12195-012-0244-9Search in Google Scholar

17. Guo, Y., Zhang, C., Zeng, Q., Li, R., Liu, L., Hao, Q., Shi, C., Zhang, X. and Yan, Y. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential. Biomed. Eng. Online 11 (2012) 80. DOI: 10.1186/1475-925X-11-80.10.1186/1475-925X-11-80Search in Google Scholar PubMed PubMed Central

18. Flieger, J., Karachalios, T., Khaldi, L., Raptou, P. and Lyritis, G. Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif. Tissue Int. 63 (1998) 510-514. DOI: 10.1007/s002239900566.10.1007/s002239900566Search in Google Scholar PubMed

19. Rubin, C.T. and Lanyon, L.E. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66 (1984) 397-402. DOI: 10.1007/978-1-4471-5451-8_134.10.1007/978-1-4471-5451-8_134Search in Google Scholar

20. Lee, K., Jessop, H., Suswillo, R., Zaman, G. and Lanyon, L. Endocrinology: bone adaptation requires oestrogen receptor-α. Nature 424 (2003) 389-389. DOI:10.1038/424389a.10.1038/424389aSearch in Google Scholar PubMed

21. Brunski, J.B. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv. Dent. Res. 13 (1999) 99-119. DOI: 10.1177/08959374990130012301.10.1177/08959374990130012301Search in Google Scholar PubMed

22. Onal, M., Piemontese, M., Xiong, J, Wang, Y., Li, H., Ye, S., Komatsu, M., Selig, M., Weinstein, R.S., Zhao, H., Jilka, R.L., Almeida, M., Manolagas, S.C. and O’Brien, C.A. Suppression of autophagy in osteocytes mimics skeletal aging. J. Biol. Chem. 288 (2013) 17432-17440. DOI: 10.1177/ 08959374990130012301.Search in Google Scholar

23. Wang, L., Zhang, X., Guo, Y., Chen, X., Li, R., Liu, L., Shi, C., Guo, C. and Zhang, Y. Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts. Cell. Physiol. Biochem. 26 (2011) 1093-1102. DOI: 10.1159/000323987.10.1159/000323987Search in Google Scholar PubMed

24. Galea, G.L., Meakin, L.B., Sugiyama, T., Zebda, N., Sunters, A., Taipaleenmaki, H., Stein, G.S., van Wijnen, A.J., Lanyon, L.E. and Price, J.S. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute downregulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J. Biol. Chem. 288 (2013) 9035-9048. DOI: 10.1074/jbc.M112.405456.10.1074/jbc.M112.405456Search in Google Scholar PubMed PubMed Central

25. Tang, J., Ahmad, A. and Sarkar, F.H. The role of microRNAs in breast cancer migration, invasion and metastasis. Int. J. Mol. Sci. 13 (2012) 13414-13437. DOI: 10.3390/ijms131013414.10.3390/ijms131013414Search in Google Scholar PubMed PubMed Central

26. Jorganes, A.C., Araldi, E., Penalva, L.F., Sandhu, D., Hernando, C.F. and Suárez,Y. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler. Throm. Vasc. Biol. 31 (2011) 2595-2606. DOI: 10.1161/ATVBAHA.111.236521.10.1161/ATVBAHA.111.236521Search in Google Scholar PubMed PubMed Central

27. Yang, J., Qin, S., Yi, C., Ma, G., Zhu, H., Zhou, W., Xiong, Y., Zhu, X., Wang, Y., He, L. and Guo, X. MiR-140 is co-expressed with< i> Wwp2- C</i> transcript and activated by Sox9 to target< i> Sp1</i> in maintaining the chondrocyte proliferation. FEBS Lett. 585 (2011) 2992-2997. DOI: 10.1016/j.febslet.2011.08.013.10.1016/j.febslet.2011.08.013Search in Google Scholar PubMed

28. Lin, G. and Hankenson, K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell Biochem. 11 (2011) 3491-3501. DOI: 10.1002/jcb.23287.10.1002/jcb.23287Search in Google Scholar PubMed PubMed Central

29. Ng, C.F., Xu, J., Li, M.S. and Tsui, S.K. Identification of FHL2-Regulated Genes in Liver by Microarray and Bioinformatics Analysis. J. Cell Biochem. 115 (2014) 744-753. DOI: 10.1002/jcb.24714.10.1002/jcb.24714Search in Google Scholar PubMed

30. Wang, S., Huang, H., Chen, S., Li, X., Zhang, W. and Tang, Q. Gdf6 induces commitment of pluripotent mesenchymal C3H10T1/2 cells to the adipocyte lineage. FEBS J. 280 (2013) 2644-2651. DOI: 10.1111/ febs.12256.Search in Google Scholar

31. Gradus, B. and Hornstein, E. Role of microRNA in skeleton development. Bone and Development 6 (2010) 81-91. DOI: 10.1007/978-1-84882-822-3_5.10.1007/978-1-84882-822-3_5Search in Google Scholar

32. Roson-Burgo, B., Sanchez-Guijo, F., Cañizo, C.D. and Las Rivas, J.D. Transcriptomic portrait of human mesenchymal stromal/stem cells isolated from bone marrow and placenta. BMC Genomics 15 (2014) 910-910. DOI: 10.1186/1471-2164-15-910.10.1186/1471-2164-15-910Search in Google Scholar PubMed PubMed Central

33. Ishibashi, O. and Inui, T. Identification of endoglin-dependent BMP-2- induced genes in the murine periodontal ligament cell line PDL-L2. J. Mol. Signal. 9 (2014) 5. DOI: 10.1186/1750-2187-9-5. 10.1186/1750-2187-9-5Search in Google Scholar PubMed PubMed Central

Received: 2014-12-31
Accepted: 2015-6-28
Published Online: 2015-10-15
Published in Print: 2015-12-1

© 2015

Downloaded on 28.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/cmble-2015-0034/html
Scroll Up Arrow