Abstract
We present classical and recent results on Kähler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for the SMI course "Kähler-Einstein metrics" given by C.S. in Cortona (Italy), May 2017. The material is not intended to be original.
References
[Aub76] Th. Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119-A121.Search in Google Scholar
[Aub78] Th. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63-95.Search in Google Scholar
[Aub84] Th. Aubin, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), no. 2, 143-153.Search in Google Scholar
[Aub98] Th. Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.10.1007/978-3-662-13006-3Search in Google Scholar
[Bal06] W. Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006.10.4171/025Search in Google Scholar
[BM87] S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic geometry, Sendai, 1985, 11-40, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.Search in Google Scholar
[Ber13] R. J. Berman, A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, Adv. Math.248 (2013), 1254-1297.10.1016/j.aim.2013.08.024Search in Google Scholar
[Ber16] R. J. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973-1025.Search in Google Scholar
[BB17] R. J. Berman, B. Berndtsson, Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165-1196.Search in Google Scholar
[BBJ15] R. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, arXiv:1509.04561.Search in Google Scholar
[Bes87] A. L. Besse, Einstein manifolds, Reprint of the 1987 edition, Classics in Mathematics. Springer-Verlag, Berlin, 2008.10.1007/978-3-540-74311-8_7Search in Google Scholar
[Bla56] A. Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 157-202.10.24033/asens.1045Search in Google Scholar
[Boc46] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776-797.10.1090/S0002-9904-1946-08647-4Search in Google Scholar
[Bog78] F. A. Bogomolov, Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 6, 1227-1287, 1439. English translation in Math. USSR-Izv. 13 (1979), no. 3, 499-555.Search in Google Scholar
[BBI01] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001.10.1090/gsm/033Search in Google Scholar
[CC95] L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995.10.1090/coll/043Search in Google Scholar
[Cal54] E. Calabi, The space of Kähler metrics, Proc. Internat. Congress Math. Amsterdam 2 (1954), pp. 206-207.Search in Google Scholar
[Cal57] E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 78-89, Princeton University Press, Princeton, N. J., 1957.10.1515/9781400879915-006Search in Google Scholar
[CdS01] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001.Search in Google Scholar
[CL73] J. B. Carrell, D. I. Lieberman, Holomorphic Vector fields and Kaehler Manifolds, Invent. Math. 21 (1973), 303-309.10.1007/BF01418791Search in Google Scholar
[Cat99] D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and geometry in several complex variables (Katata, 1997), 1-23, Trends Math., Birkhäuser Boston, Boston, MA, 1999.10.1007/978-1-4612-2166-1_1Search in Google Scholar
[Che01] J. Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 2001.Search in Google Scholar
[Che08] I. A. Chel’tsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), no. 4, 1118-1144.Search in Google Scholar
[CS08] I. A. Chel’tsov, K. A. Shramov, Log-canonical thresholds for nonsingular Fano threefolds. With an appendix by J.-P. Demailly, Uspekhi Mat. Nauk 63 (2008), no. 5(383), 73-180; translation in Russian Math. Surveys 63 (2008), no. 5, 859-958.Search in Google Scholar
[Che00] X.x. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189-234.Search in Google Scholar
[CDS14] X.x. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics and stability, Int. Math. Res. Not. IMRN 2014 (2014), no. 8, 2119-2125.Search in Google Scholar
[CDS15] X.x. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, II: Limits with cone angle less than 2π, III: Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 183-197, 199-234, 235-278.Search in Google Scholar
[CSW15] X.x. Chen, S. Sun, B. Wang, Kähler-Ricci flow, Kähler-Einstein metric, and K-stability, arXiv:1508.04397.Search in Google Scholar
[CTW17] J. Chu, V. Tosatti, B. Weinkove, On the C1,1 Regularity of Geodesics in the Space of Kähler Metrics, Ann. PDE 3 (2017), no. 2, 3-15.Search in Google Scholar
[DL12] T. Darvas, L. Lempert, Weak geodesics in the space of Kähler metrics, Math. Res. Lett. 19 (2012), no. 5, 1127-1135.Search in Google Scholar
[DS16] V. Datar, G. Székelyhidi, Kähler-Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016), no. 4, 975-1010.Search in Google Scholar
[Deb01] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001.10.1007/978-1-4757-5406-3Search in Google Scholar
[DGMS75] P. Deligne, Ph. Grifiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245-274.Search in Google Scholar
[Dem12] J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012.Search in Google Scholar
[Dem17] J.-P. Demailly, Variational approach for complex Monge-Ampère equations and geometric applications, Séminaire Bourbaki, Exposé 1112, Astérisque 390 (2017), 245-275.Search in Google Scholar
[DK01] J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556.Search in Google Scholar
[Din88] W. Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), no. 3, 463-471.Search in Google Scholar
[Dol53] P. Dolbeault, Sur la cohomologie des variétés analytiques complexes., C. R. Acad. Sci. Paris 236 (1953). 175-177.Search in Google Scholar
[Don87] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231-247.Search in Google Scholar
[Don97] S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-manifold topology, in Fields Medallists’ lectures, 384-403, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997.10.1142/9789812385215_0042Search in Google Scholar
[Don99] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, in Northern California Symplectic Geometry Seminar, 13-33, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999.10.1090/trans2/196/02Search in Google Scholar
[Don01] S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479-522.Search in Google Scholar
[Don02a] S. K.Donaldson, Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom. 1 (2002), no. 2, 171-196.Search in Google Scholar
[Don02b] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289-349.Search in Google Scholar
[Don05] S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), no. 3, 453-472.Search in Google Scholar
[Don12] S. K. Donaldson, Kähler metrics with cone singularities along a divisor, in Essays in mathematics and its applications, 49-79, Springer, Heidelberg, 2012.10.1007/978-3-642-28821-0_4Search in Google Scholar
[Don15] S. K. Donaldson, Algebraic families of constant scalar curvature Kähler metrics, in Surveys in differential geometry 2014. Regularity and evolution of nonlinear equations, 111-137, Surv. Differ. Geom., 19, Int. Press, Somerville, MA, 2015.10.4310/SDG.2014.v19.n1.a5Search in Google Scholar
[DS14] S. K. Donaldson, S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014), no. 1, 63-106.Search in Google Scholar
[DS17] S. K. Donaldson, S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017), no. 2, 327-371.Search in Google Scholar
[Eva82] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333-363.10.1002/cpa.3160350303Search in Google Scholar
[EGZ09] Ph. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607-639.Search in Google Scholar
[Fig17] A. Figalli, The Monge-Ampère equation and its applications, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017.10.4171/170Search in Google Scholar
[Fuj90] A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231-243], Sugaku Expositions 5 (1992), no. 2, 173-191.Search in Google Scholar
[Fuj15] K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, arXiv:1508.04578.Search in Google Scholar
[Fuj16a] K. Fujita, A valuative criterion for uniform K-stability of Q-Fano varieties, arXiv:1602.00901.Search in Google Scholar
[Fuj16b] K. Fujita, K-stability of Fano manifolds with not small alpha invariants, arXiv:1606.08261.Search in Google Scholar
[Fut83] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437-443.Search in Google Scholar
[Gau15] P. Gauduchon, Calabi’s extremal Kähler metrics: An elementary introduction, http://germanio.math.uniff.it/wpcontent/uploads/2015/03/dercalabi.pdf.Search in Google Scholar
[GT98] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.10.1007/978-3-642-61798-0Search in Google Scholar
[GH78] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Reprint of the 1978 original, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994.Search in Google Scholar
[LNM2038] Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Edited by Vincent Guedj, Lecture Notes in Mathematics, 2038, Springer, Heidelberg, 2012.Search in Google Scholar
[GZ17] V. Guedj, A. Zeriahi, Degenerate complex Monge-Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society (EMS), Zürich, 2017.10.4171/167Search in Google Scholar
[Gue15] H. Guenancia, Kähler-Einstein metrics: from cones to cusps, arXiv:1504.01947.Search in Google Scholar
[Huy05] D. Huybrechts, Complex geometry. An introduction, Universitext, Springer-Verlag, Berlin, 2005.Search in Google Scholar
[JMR16] T. Jeffres, R. Mazzeo, Y. A. Rubinstein, Kähler-Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95-176.Search in Google Scholar
[Kob74] S. Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math. (2) 74 (1961), 570-574.10.2307/1970298Search in Google Scholar
[KN2] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II, Reprint of the 1969 original, Wiley Classics Library, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996.Search in Google Scholar
[Kod54] K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. Math. (2) 60 (1954), 28-48.10.2307/1969701Search in Google Scholar
[Kod86] K. Kodaira, Complex manifolds and deformation of complex structures, Translated from the 1981 Japanese original by Kazuo Akao, Reprint of the 1986 English edition, Classics in Mathematics, Springer-Verlag, Berlin, 2005.10.1007/3-540-26961-4_2Search in Google Scholar
[Kol96] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, A Series of Modern Surveys in Mathematics, 32, Springer-Verlag, Berlin, 1996.Search in Google Scholar
[KMM92] J. Kollár, Y. Miyaoka, S. Mori, Rational Connectedness and Boundedness of Fano Manifolds, J. Diff. Geom. 36 (1992), 765-769.Search in Google Scholar
[KM98] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998.10.1017/CBO9780511662560Search in Google Scholar
[Kry82] N. V. Krylov. Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 487-523.Search in Google Scholar
[LBS94] C. R. LeBrun, S. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Analysis 4 (1994), no. 3, 298-336.Search in Google Scholar
[LV13] L. Lempert, L. Vivas, Geodesics in the space of Kähler metrics, Duke Math. J. 162 (2013), no. 7, 1369-1381.Search in Google Scholar
[Li11] C. Li, Greatest lower bounds on Ricci curvature for toric Fano manifolds, Adv. Math. 226 (2011), no. 6, 4921-4932.Search in Google Scholar
[Li15a] C. Li, Minimizing normalized volumes of valuations, arXiv:1511.08164.Search in Google Scholar
[Li15b] C. Li, Remarks on logarithmic K-stability, Commun. Contemp. Math. 17 (2015), no. 2, 1450020, 17 pp..10.1142/S0219199714500205Search in Google Scholar
[LS14] C. Li, S. Sun, Conical Kähler-Einstein metrics revisited, Comm. Math. Phys. 331 (2014), no. 3, 927-973.Search in Google Scholar
[LX14] C. Li, C. Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197-232.Search in Google Scholar
[LY87] J. Li, S.-T. Yau, Hermitian-Yang-Mills connection on non-Kähler manifolds, in Mathematical aspects of string theory (San Diego, Calif., 1986), 560-573, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987.10.1142/9789812798411_0027Search in Google Scholar
[Lic58] A. Lichnerowicz, Géométrie des groupes de transformation, Travaux et Recherches Mathématiques 3, Dunod (1958).Search in Google Scholar
[Liu16] Y. Liu, The volume of singular K¨hler-Einstein Fano varieties, arXiv:1605.01034.Search in Google Scholar
[LX17] Y. Liu, C. Xu, K-stability of cubic threefolds, arXiv:1706.01933.Search in Google Scholar
[Lu00] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), no. 2, 235-273.Search in Google Scholar
[LT95] M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.10.1142/2660Search in Google Scholar
[Mab87] T. Mabuchi, A Functional Integrating Futaki’s Invariant, Proc. Japan Acad. Ser. A 61 (1985), no. 4, 119-120.Search in Google Scholar
[Mab87] T. Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227-252.Search in Google Scholar
[Mab08] T. Mabuchi, K-stability of constant scalar curvature polarization, arXiv:0812.4093.Search in Google Scholar
[MM93] T. Mabuchi, S. Mukai, Stability and Einstein-Kähler metric of a quartic del Pezzo surface, in Einstein metrics and Yang-Mills connections (Sanda, 1990), 133-160, Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993.10.1201/9781003071891-11Search in Google Scholar
[MS06] D. Martelli, J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Comm. Math. Phys. 262 (2006), no. 1, 51-89.Search in Google Scholar
[Mat57] Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145-150.10.1017/S0027763000002026Search in Google Scholar
[Miy77] Y. Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977), 225-237.10.1007/BF01389789Search in Google Scholar
[Mor79] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. 110 (1979), 593-606.10.2307/1971241Search in Google Scholar
[Mor07] A. Moroianu, Lectures on Kähler geometry, London Mathematical Society Student Texts, 69, Cambridge University Press, Cambridge, 2007.10.1017/CBO9780511618666Search in Google Scholar
[MK71] J. Morrow, K. Kodaira, Complex manifolds, Reprint of the 1971 edition with errata, AMS Chelsea Publishing, Providence, RI, 2006.10.1090/chel/355Search in Google Scholar
[Mos65] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.10.1090/S0002-9947-1965-0182927-5Search in Google Scholar
[Mum77] D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39-110.Search in Google Scholar
[Mum79] D. Mumford, An algebraic surface with K ample, (K2) = 9, pg = q = 0, Amer. J. Math. 101 (1979), no. 1, 233-244.Search in Google Scholar
[MFK94] D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer-Verlag, Berlin, 1994.10.1007/978-3-642-57916-5Search in Google Scholar
[MS39] S. B. Myers, N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939), no. 2, 400-416.Search in Google Scholar
[NN57] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404.10.2307/1970051Search in Google Scholar
[New78] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978.Search in Google Scholar
[OSS16] Y. Odaka, C. Spotti, S. Sun, Compact moduli spaces of del Pezzo surfaces and Kähler-Einstein metrics, J. Differential Geom. 102 (2016), no. 1, 127-172.Search in Google Scholar
[Pag79] D. Page, A Compact Rotating Gravitational Instanton, Phys. Lett. B 79B (1979), 235-238.10.1016/0370-2693(78)90231-9Search in Google Scholar
[PT09] S. T. Paul, G. Tian, CM stability and the generalized Futaki invariant II, Astérisque 328 (2009) (2010), 339-354.Search in Google Scholar
[PSS07] D. H. Phong, N. Sesum, J. Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613-632.Search in Google Scholar
[RT07] J. Ross, R. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), no. 2, 201- 255.Search in Google Scholar
[Rua98] W.-D. Ruan, Canonical coordinates and Bergmann metrics, Comm. Anal. Geom. 6 (1998), no. 3, 589-631.Search in Google Scholar
[Sem92] S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495-550.Search in Google Scholar
[Spo17] C. Spotti, Kähler-Einstein Metrics on Q-Smoothable Fano Varieties, Their Moduli and Some Applications, in Complex and Symplectic Geometry, 211-229, Springer INdAM Series 21, Springer, 2017.10.1007/978-3-319-62914-8_16Search in Google Scholar
[SS17] C. Spotti, S. Sun, Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, arXiv:1705.00377.Search in Google Scholar
[Sto09] J. Stoppa, K-stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009), no. 4, 1397-1408.Search in Google Scholar
[Szé11] G. Székelyhidi, Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math. 147 (2011), no. 1, 319-331.Search in Google Scholar
[Szé14] G. Székelyhidi, An introduction to extremal Kähler metrics, Graduate Studies in Mathematics, 152, American Mathematical Society, Providence, RI, 2014.Search in Google Scholar
[Tho06] R. P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, Surveys in differential geometry. Vol. X, 221-273, Surv. Differ. Geom., 10, Int. Press, Somerville, MA, 2006.10.4310/SDG.2005.v10.n1.a7Search in Google Scholar
[Thu82] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381.Search in Google Scholar
[Tian87] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with C1(M) > 0, Invent. Math. 89 (1987), no. 2, 225-246.Search in Google Scholar
[Tia90a] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101-172.Search in Google Scholar
[Tia90b] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99-130.Search in Google Scholar
[Tia92] G. Tian, On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (1992), no. 3, 401-413.Search in Google Scholar
[Tia94] G. Tian, The K-energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994), no. 2, 239-265.Search in Google Scholar
[Tia97] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1-37.Search in Google Scholar
[Tia00] G. Tian, Canonical metrics in Kähler geometry, Notes taken by Meike Akveld, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000.10.1007/978-3-0348-8389-4Search in Google Scholar
[TY90] G. Tian, S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc. 3 (1990), no. 3, 579-609.Search in Google Scholar
[TY91] G. Tian, S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature. II, Invent. Math. 106 (1991), no. 1, 27-60.Search in Google Scholar
[Tos17] V. Tosatti, Uniqueness of CPn, Expo. Math. 35 (2017), no. 1, 1-12.Search in Google Scholar
[UY86] K. Uhlenbeck, S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Frontiers of the mathematical sciences: 1985 (New York, 1985), Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257--S293.Search in Google Scholar
[VdV66] A. Van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1624-1627.10.1073/pnas.55.6.1624Search in Google Scholar PubMed PubMed Central
[Voi07] C. Voisin, Hodge theory and complex algebraic geometry. I, Translated from the French by Leila Schneps, Reprint of the 2002 English edition, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2007.Search in Google Scholar
[WZ04] X.-J. Wang, X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), no. 1, 87-103.Search in Google Scholar
[Wel08] R. O. Wells, Differential analysis on complex manifolds, Third edition, With a new appendix by Oscar Garcia-Prada, Graduate Texts in Mathematics, 65, Springer, New York, 2008.10.1007/978-0-387-73892-5_3Search in Google Scholar
[Yau77] S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798-1799.Search in Google Scholar
[Yau78] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411.Search in Google Scholar
[Zel98] S. Zelditch, Szego kernels and a theorem of Tian, Internat. Math. Res. Notices 1998 (1998), no. 6, 317-331.Search in Google Scholar
© 2018
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.