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1 Introduction

A holomorphic chain on a complex manifold is a formal �nite linear combination of some irreducible holo-
morphic subvarieties with integer coe�cients. Since every holomorphic variety V of dimension k naturally
de�nes a d-closed integral current [V] of type (k, k), it is a natural question to ask if the three properties:
d-closed, integral and type (k, k) su�ce to characterize holomorphic chains. For d-closed positive integral
currents, the problemwas solved by King ([13]). For general d-closed integral currents of type (k, k), the prob-
lem was solved by Harvey and Shi�man ([12]) but with a hypothesis on the support of currents. Harvey and
Shi�man conjectured that this hypothesis was not needed, but theywere unable to overcome it. This problem
was �nally solved by Alexander ([2]) after more than 20 years later. The case for holomorphic chains with real
coe�cients is quite di�erent from the integral case. Being d-closed, type (k, k) and real recti�able may not be
holomorphic chains with real coe�cients. In this case, we really need restriction on the support of currents.
We solved this problem for positive d-closed real recti�able currents in [18], and in this paper, we solve this
problem completely without the positivity condition. The following is our main result.

Theorem 1.1. Let X be a complex manifold. A 2k-current T is a real holomorphic chain on X if and only if
T ∈ RRlock,k(X) is d-closed and spt(T) isH2k-locally �nite.

From this result, we are able to generalize the structure theorem of Harvey and King (Theorem 4.5) and some
results about stable currents of Harvey and Shi�man. We are interested in this problem not only because it
is a natural question to ask, but it also has some applications in our study of algebraic cycles, tightly related
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to the Hodge conjecture. For example in Proposition 4.1, we prove that on a complex projective manifold, if a
d-closed smooth form e considered as a current can be written as

e = P + da

where P is a Lipschitz 2k-chain with rational coe�cients which is dc-closed, then e is homologous to some
algebraic cycle with rational coe�cients. Application of methods from geometric measure theory to study
algebraic cycles is very fruitful, some papers that are especially inspiring us are [3, 4, 8–11, 13–15].

This paper is organized as follows. We follow Alexander’s strategy to prove our main result by induction.
Section 2 contains some preliminary results that are needed to prove the case k = 1, and Section 3 completes
the induction. Our new key idea is an observation made by the second author that the positive current T′

associated to a d-closed real recti�able current T of type (k, k) with H2k-locally �nite support is actually
d-closed for k ≥ 2. Therefore by our result for the positive case in [18], T′ and hence T are holomorphic
chains with real coe�cients. This in some sense simpli�es half of Alexander’s proof, but since we use Siu’s
semicontinuity theorem in an essential way for the positive case, this does not mean our proof is easier, but
probably easier conceptually. In Section 4, we use our main result to generalize some results that we proved
in [18] and some results in [12]. These include some results about homologically volumeminimizing currents,
stable currents and stationary currents.

Acknowledgement: We would like to thank the reviewer for his/her valuable comments on the paper and
Professor Harvey for his encouragement.

2 Preliminary results

We �x some notations that will be used throughout this paper. Let M be an oriented smooth manifold. Let
Ar(M) be the space of complex-valued smooth r-forms on M and let Arc(M) be the space of complex-valued
r-forms with compact support on M. Dually, D ′r(M) is the space of currents of dimension r and E ′r (M) is the
space of currents of dimension r with compact support.

De�nition 2.1. An r-current T ∈ E′r(M) with support in a compact set K ⊂ M is said to be a real recti�able
current in K if for any ε > 0, there is an open subset U of some Rn, a Lipschitz map f : U → M and a �nite real
polyhedral r-chain P (in this article, we assume that simplices are nonoverlapping) with f (sptP) ⊂ K and

M(T − f*(P)) < ϵ

where M denotes the mass norm. The group of real recti�able r-currents in K is denoted by RRr,K(M) and ele-
ments of the union

RRr(M) :=
⋃
K⊂M,

K compact

RRr,K(M)

are called real recti�able r-currents in M. The group RRlocr (M) of locally real recti�able r-currents in M is the
collection of all T ∈ D ′r(M) such that for each x ∈ M, there is S ∈ RRr(M) such that x ∈ ̸ spt(T − S).

We recall the de�nition of real holomorphic chains.

De�nition 2.2. Let X be a complex manifold. A current T ∈ D ′2k(X) is said to be a real holomorphic k-chain
on X if T can be written in the form T =

∑∞
j=1 rj[Vj] where rj ∈ R and V =

⋃∞
j=1 Vj is a purely k-dimensional

holomorphic subvariety of Xwith irreducible components {Vj}∞j=1. The vector space of real holomorphic k-chains
on X is denoted by RZ k(X). Also let RZ +

k(X) denote the set of positive real holomorphic k-chains on X, i.e.,
those real holomorphic k-chains with nonnegative coe�cients.
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We denote the Hausdor� k-measure byHk.

De�nition 2.3. A Hk-measurable subset A ⊂ M is called Hk-locally �nite if for all a ∈ M, there is an open
neighborhood V ⊂ M of a such thatHk(V ∩ A) < ∞.

We refer the reader to [13, Theorem 2.4.4] for the following result.

Lemma 2.4. Let A be a subset of Cn and let ϵ > 0. IfH2k+ϵ(A) = 0, then for almost all complex (n − k) planes
L through 0,Hϵ(A ∩ L) = 0.When A is closed in a neighborhood of 0 and πL is a linear map fromCn toCk with
kernel L, H1(A ∩ L) = 0 implies that there is a neighborhood V of 0 such that the restriction π|A∩V is a proper
map.

Since Theorem 1.1 is a local result, we may assume that T ∈ RRlock,k(U) for some open set U ⊂ Cn, dT = 0
and the support spt(T) of T is of H2k-locally �nite. Furthermore, by making a translation, we may assume
0 ∈ spt(T). This T is �xed through section 2 and 3.

For I = {i1, ..., ik} ⊂ {1, 2, ..., n}where i1 < · · · < ik, we let πI(z1, ..., zn) = (zi1 , ..., zik ) be the projection
from Cn to Ck. It follows from the above Lemma that, after a possible linear change of coordinates, each of
the planes {z : πI(z) = 0}meets X in a discrete set at 0. Fix I0 = {1, 2, ..., k} and write π for πI0 . There exist
r > 0 and δ > 0 such that spt(T) is disjoint from ∆′(r) × ∂∆′′(δ) where

∆′(r) = {z′ = (z′1, ..., z′k) ∈ Ck : |z′j| < r, 1 ≤ j ≤ k}

and
∆′′(δ) = {z′′ = (z′′1 , ..., z′′n−k) ∈ Cn−k : |z′′j | < δ, 1 ≤ j ≤ n − k}

Set
∆ = ∆′(r) × ∆′′(δ)

and X0 = spt(T) ∩ ∆. Then π|X0 is a proper map from X0 onto ∆′ and, writing z = (z′, z′′), the projection π to
Ck is given by π(z) = z′. Also, let πj : ∆ → C where πj(z) = zj be the projection to the j-th coordinate.

We will prove our main result by induction. First, we use the method in [2] to prove the case k = 1 . Now
let k = 1 and ρ(z) = |z1|. Let T(r) = T|U∩(∆′(r)×∆′′(δ)) be the restriction of T to U ∩ (∆′(r) × ∆′′(δ)). Shrinking r,
we may assume the slice 〈T|U∩(C×∆′′(δ)), ρ, r〉 exists as a real recti�able 1-current supported in

K := spt(T) ∩ (∂∆′(r) × ∆′′(δ))

and note that, in this case, the slice
〈T|U∩(C×∆′′(δ)), ρ, r〉 = bT(r)

by [5, 4.2.1].

From [5, 2.10.25], we have a bound on the measure of slices cut by a Lipschitz map.

Theorem 2.5. If f : Rk → Rl is a Lipschitz map , A ⊂ Rk , 0 ≤ m < ∞, and 0 ≤ n < ∞, then

*∫
Rl

Hm(A ∩ f −1(y))dHn(y) ≤ (Lip(f ))n Ω(m)Ω(n)
Ω(m + n) H

m+n(A)

By the above theorem, we have

*∫
Br0 (0)

H1(X ∩ ρ−1(r))dL1(r) ≤ 4H2(X)
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for any r0 > 0. So we may assumeH1(K) < ∞.

Since bT(r) is a closed real recti�able current, the set

N := {z ∈ Cn : Θ1(bT(r), z) > 0}

is countably 1-recti�able. So there exist countably many C1-curves {γj}∞j=1 such that for each j, there is aH1-
integrable function θj on γj which satisfy

θj(z) =
{
Θ1(bT(r), z), if z ∈ N
0, otherwise

and bT(r) =
∞∑
j=1

γj ∧ θj .

Hence

M(bT(r)) =
∞∑
j=1

M(γj ∧ θj) =
∞∑
j=1

∫
γj

|θj|dH1 < ∞.

Also, ‖bT(r)‖ =
∑∞

j=1 H
1
⌊
|θj|. Here, γj = image(cj), for some C1-embedding cj : (0, 1) → U, and the

orientation of γj is induced from the natural orientation of (0, 1).

De�nition 2.6. Let γ : (0, 1) → Cn be a C1-curve and f be a H1-integrable complex-valued function on
γ((0, 1)). Write γ(t) = (γ1(t), ..., γn(t)). We de�ne

∫
γ

|f ||dz1| ≡
1∫

0

|f ◦ γ(t)||γ′1(t)|dt.

By a simple computation, we have :

Proposition 2.7. Suppose γ : (0, 1) → Cn is a C1-curve and f is a H1-integrable complex-valued function on
γ((0, 1)). Then

|
∫
γ

fdz1| ≤
∫
γ

|f ||dz1|.

From [16, section 12], we have an area formula.

Theorem 2.8. (Area formula) Let A be a Hn-measurable and countably n-recti�able set in Rn+k and f be a
locally Lipschitz map on V into Rn+k1 where V is an open set in Rn+k containing A. If g is a non-negative Hn-
measurable function on A, then ∫

A

g JA fdHn =
∫

Rn+k1

{
∫

A∩f −1(y)

gdH0}dHn(y).

Proposition 2.9. Let θ be a H1-integrable real-valued function on γ where γ : (0, 1) → Cn is a C1-curve and
consider the real recti�able 1-current γ ∧ θ where the orientation of γ is induced from the natural orientation of
(0,1). We have ∫

γ

|θ||dz1| ≤M(γ ∧ θ).
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Proof. ∫
γ

|θ||dz1| =
1∫

0

|θ ◦ γ(t)||γ′1(t)| dt =
1∫

0

|θ ◦ γ(t)||(π1 ◦ γ)′(t)| dt

=
∫
R2

{
∫

(π1◦γ)−1(y)

|θ ◦ γ| dH0} dH1(y) (by Theorem 2.8)

=
∫

π1(γ)

{
∫

(π1◦γ)−1(y)

|θ ◦ γ| dH0} dH1(y)

= M(π1*(γ, |θ|)) (Here (γ, |θ|) is a varifold, see [16, 15.6])

=
∫
γ

(Jγπ1)|θ| dH1 (by Theorem 2.8, see [16, 15.7])

≤
∫
γ

|θ| dH1 = M(γ ∧ θ).

We now consider the Cauchy transform of the 1-current bT(r) in the coordinate function z1 (see [19, pg 8]).

Lemma 2.10. De�ne

bT(r)( |dz1|
|z1 − α|

) :=
∞∑
j=1

∫
γj

|θj||dz1|
|z1 − α|

Then bT(r) < ∞ for L2-a.e. α in C.

Proof. Fix R > 0 with π(spt(bT(r))) ⊂ π(K) ⊂ BR(0), by Fubini’s theorem,∫
|z1|<R

{
∫
γj

|θj||dz1|
|z1 − α|

}dx ∧ dy =
∫
γj

|θj|
∫
|z1|<R

dx ∧ dy
|z1 − α|

|dz1|

For α ∈ π(spt(bT(r))) and |z1| < R, |z1 − α| < 2R, then by making z′1 = z1 − α, we have∫
|z1|<R

dx ∧ dy
|z1 − α|

≤
∫

|z′1|<2R

dx′ ∧ dy′
|z′1|

=
2R∫

0

rdr
2π∫

0

dθ
r = 4πR

Hence by Proposition 2.9(see [19, Lemma 2.4]),∫
|z1|<R

{
∫
γj

|θj||dz1|
|z1 − α|

}dxdy ≤ 4πR ·
∫
γj

|θj||dz1| ≤ 4πR ·M(γj ∧ θj) < ∞

For almost all α, it is a Federer’s result that the slice 〈T(r), π, α〉 exists and is a real recti�able 0-current, i.e.,
this slice is given by

∑s
j=1 nj[wj] where wj’s are distinct points in ∆ with π(wj) = α and nj’s are non-zero real

numbers (see [5, 4.3.8]). Alexander proved a Cauchy formula in [2, pg 125] for bT(r) when T is an integral
current. We observe that his proof is actually valid for locally real recti�able currents of type (1, 1). We state
his result in a more general form as follows.

Theorem 2.11. (Alexander’s Cauchy Formula) Let U ⊂ Cn be an open set and T ∈ RRloc1,1(U) be a closed locally
real recti�able current of type (1, 1) on U. Fix r, δ > 0. Let T(r) := T|U∩(∆′(r)×∆′′(δ)) and π : Cn → C be the
projection π(z1, ..., zn) = z1. Fix α ∈ C. Suppose that the slice bT(r) exists as a closed locally real recti�able
1-current supported on ∂(∆′(r) × ∆′′(δ)),
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1. bT(r)( |dz1|
|z1−α| ) < ∞ and

2. the slice 〈T(r), π, α〉 exists and is equal to
∑s

j=1 nj[wj] where all nj’s ∈ R,

then for all holomorphic functions f in Cn,

bT(r)( fdz1
z1 − α

) = 2πi〈T(r), π, α〉(f ) = 2πi
s∑
j=1

nj f (wj).

Remark 2.12. The integral representing bT(r)( fdz1
z1−α ) converges (absolutely) by Proposition 2.7 and 1.

Lemma 2.13. Suppose that α satis�es the hypothesis of the Alexander’s Cauchy formula and the slice
〈T(r), π, α〉 =

∑s
j=1 nj[wj] is non-zero. Set w = w1. Then there is a representing measure µ for w for the uni-

form algebra A of functions holomorphic on ∆ and continuous on ∆̄ with supp(µ) ⊂ ∂∆ and µ is concentrated
on N, i.e., µ(N) = 1. In particular, supp(µ) ⊂ K.

Proof. Choose a polynomial g such that g(w1) = 1 and g(wj) = 0 for j > 1. Then for every polynomial f , by
the Alexander’s Cauchy formula, we have

bT(r)( fgdz1
z1 − α

) = 2πi
∞∑
j=1

nj f (wj)g(wj) = 2πin1f (w).

Hence f (w) =
∫
N fdσ where

dσ = 1
2πin1

∞∑
j=1

θjgdz1
z1 − α

|γj .

For any h ∈ A and n ∈ N, the function hn(z) := h((1− 1
n )z) is holomorphic on aneighborhoodof ∆̄ for all n ∈ N.

So each hn can be approximated uniformly by polynomials on ∆̄. Since {hn}∞n=1 converges to h uniformly on ∆̄,
by diagonal process and triangle inequality, h can be approximated uniformly by polynomials on ∆̄. Thus, σ is
a complex representing measure for w concentrated on N. By [7, Theorem II.2.2], there exists a non-negative
representingmeasure µ for wwhich is absolutely continuous with respect to σ. Also, µ(N) = 1 (see [2, Lemma
6]).

Let ∆(a, λ) be the open polydisc in Cn with center a ∈ Cn and radius λ > 0, and let ω be the standard Kähler
form on Cn.

Lemma 2.14. For a non-zero R ∈ RRlock,k(U) with 0 ∈ spt(R), there exists a j satisfying 1 ≤ j ≤ n and a measur-
able set E ⊂ C of positive L2-measure such that the slice 〈R|∆(0, δ4 ), πj , α〉 exists and is non-zero for all α ∈ E.

Proof. See [2, Lemma 7, Lemma 11]. The proof mainly applies [5, 4.3.8] and [5, 4.3.2 (1)] which are also true for
locally real recti�able currents.

Let Â denote the polynomial convex hull of a set A ⊂ CN . The following result is from [1, Lemma 2].

Lemma 2.15. Let D be a closed Jordan domain in C with recti�able boundary, K a compact subset of ∂D of
positive linear measure, Q a polynomial convex set inCn, f a polynomial inCn, and s a positive integer. Assume
that Q = (f −1(∂D) ∩ Q)
∧

and f |Q is at most s − to − 1 over points of K (i.e., if λ ∈ K, then f −1(λ) ∩ Q has at most
s points). Then f −1(int(D))∩Q is a (possibly empty) pure 1-dimensional holomorphic subvariety of f −1(int(D)).

Lemma 2.16. For coordinates and the polydisc ∆ chosen as in section 1 for k = 1, there exists an 1-dimensional
subvariety V of ∆ such that for L2-a.e. α ∈ {λ ∈ C : |λ| < r}, the slice 〈T(r), π, α〉 exists, and is a real holomor-
phic 0-chain in ∆ with support in V .
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Proof. This lemma is a generalization of [2, Lemma 12] for k = 1 and the proof is similar to Alexander’s.
Assuming that 〈T(r), π, α〉 exists. It follows from the Alexander’s Cauchy formula that there is a representing
measure supported in K for each z ∈ spt(〈T(r), π, α〉). Suppose that µ is a representing measure for z. If there
is some polynomial P such that |P(z)| > supK |P|, then

|P(z)| = |
∫
K

Pdµ| ≤
∫
K

|P|dµ <
∫
K

|P(z)|dµ = |P(z)|

which is a contradiction. Hence z ∈ K̂.

Since H1(K) < ∞, by Theorem 2.5 with f replaced by π, there exist a set Q of positive measure in ∂∆′(r)
and a positive integer s such that π maps exactly s points of K to each point of Q. We can assume that Q is
compact. Since

K̂ = {[π−1(∂∆′(r))] ∩ K
∧

} ⊂ {[π−1(∂∆′(r))] ∩ K̂}
∧

⊂ ̂̂K = K̂,

we have
K̂ = {[π−1(∂∆′(r))] ∩ K̂}
∧

.

Note that π−1(z) ∩ K̂ = π−1(z) ∩ K for every z ∈ Q because K is compact, K ⊂ π−1(∂∆′(r)) and π−1(z) ∩ K
is discrete for every z ∈ Q. By Lemma 2.15, K̂ ∩ (π−1(∆′(r))) is an analytic cover with s-sheets of π−1(∆′(r)).
Hence, V ≡ K̂∩ (∆′(r)×∆′′(δ)) is also an analytic cover with at most s-sheets of ∆. Thus, V is an 1-dimensional
subvariety of ∆ such that z ∈ V for each z ∈ spt〈T(r), π, α〉. This completes the proof of this lemma.

Finally, we can apply the argument in the �rst and second paragraph of [2, pg 135] to conclude our main
theorem for k = 1 since Lemma 2.16 and Lemma 2.14 that Alexander applied have their counterparts for
locally real recti�able currents.

3 Proof of the main theorem

Now suppose that Theorem 1.1 is true for k−1 where k ≥ 2.Wewill apply Lemma 3.1 and Theorem 2.8 to reduce
the condition of Theorem 1.1 to the condition that T is positive, and complete the proof by [8, Theorem 3.9].
The same argument can be applied in [2] with [8, Theorem 3.9] replaced by [9, Theorem 5.2.1], but our method
is simpler. So this simpli�es the proof of Alexander. The main formula that enables us to do induction is the
following result which is from [5, 4.3.2 (1)].

Lemma 3.1. LetW be an open set inRm and let R ∈ F locl (W). Suppose that f : W → Rn is a smooth map. Then
〈R, f , a〉 exists for Ln-a.e. a ∈ Rn, and∫

Rn

〈R, f , a〉(φ)dLn = (R ∧ f *ωn)(φ)

for all φ ∈ Am−n−lc (W) where ωn = dx1 ∧ ... ∧ dxn.

Now we can complete the induction of the proof of our main result Theorem 1.1.

Proof. Consider k ≥ 2. Recall that T ∈ RRlock,k(U), T is d-closed and spt(T) is H2k-locally �nite. Choose r > 0
such that ∆(0, r) ⊂ U, and restrict T to ∆(0, r). We only need to show that T|∆(0,r) ∈ RRlock,k(∆(0, r)) is a real
holomorphic k-chain. So wemay assume U = ∆(0, r). Associate T the oriented real 2k-rectifold (W , θ, ~T) (see
[18, De�nition 2.8]). Let T′ ∈ RRlock,k(U) be the current given by T′(φ) =

∫
W〈φ, ξ〉dH

2k for 2k-forms φ, where
ξ (z) = ±θ(z)~T is a simple 2k-vector which represents the naturally oriented complex tangent plane toW at z
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forH2k-a.e. z ∈ W, the sign ± being chosen so that T′ is a positive current. We will show that T′ is d-closed,
then the result follows by [18, Theorem 3.9].

First, for each j, 1 ≤ j ≤ n, by [5, pg 437],

d〈T, πj , a〉 = 〈dT, πj , a〉 = 0 and spt〈T, πj , a〉 ⊂ spt(T) ∩ π−1
j (a)

for almost all a ∈ Br(0) ⊂ C. By Theorem 2.5,

*∫
Br(0)

H2k−2(spt(T) ∩ π−1
j (a))dH2(a) ≤ Ω(2k − 2)Ω(2)

Ω(2k) H2k(spt(T)) < ∞.

Hence spt(T) ∩ π−1
j (a) isH2k−2-locally �nite for almost all a ∈ Br(0). By the induction hypothesis, 〈T, πj , a〉

is a real holomorphic (k −1)-chain for almost all a ∈ Br(0). Let 〈T, πj , a〉′ be the positive (k −1, k −1)-current
associated to 〈T, πj , a〉. By [5, 4.3.8], 〈T, πj , a〉′ = 〈T′, πj , a〉 for almost all a. This implies that 〈T′, πj , a〉 is a
positive real holomorphic (k − 1)-chain for almost all a.

Second, to check that dT′(φ) = 0 for all φ ∈ A2k−1
c (U), it su�ces to consider those forms of types (k−1, k)

and (k, k − 1) because T′ is of bidimension (k, k). We prove the case (k − 1, k) since the other case is similar.
Let φ = 4fdzi1 ∧ · · · ∧ dzik−1 ∧ dz̄j1 ∧ · · · ∧ dz̄jk . Observe that

4dzi ∧ dz̄j = (dzi + dzj) ∧ (dzi + dzj) − (dzi − dzj) ∧ (dzi − dzj)

+ i(dzi + idzj) ∧ (dzi + idzj) − i(dzi − idzj) ∧ (dzi − idzj).

By the above observation, we can factor φ into four components :

(−1)k−2φ = f (dzi1 + dzj1 ) ∧ (dzi1 + dzj1 ) ∧ dzi2 ∧ · · · ∧ dzik−1 ∧ dz̄j2 ∧ · · · ∧ dz̄jk
− f (dzi1 − dzj1 ) ∧ (dzi1 − dzj1 ) ∧ dzi2 ∧ · · · ∧ dzik−1 ∧ dz̄j2 ∧ · · · ∧ dz̄jk
+ if (dzi1 + idzj1 ) ∧ (dzi1 + idzj1 ) ∧ dzi2 ∧ · · · ∧ dzik−1 ∧ dz̄j2 ∧ · · · ∧ dz̄jk
− if (dzi1 − idzj1 ) ∧ (dzi1 − idzj1 ) ∧ dzi2 ∧ · · · ∧ dzik−1 ∧ dz̄j2 ∧ · · · ∧ dz̄jk .

Therefore, by change of variables, we can further assume that

φ = i
2 f (dzi1 ∧ dz̄i1 ) ∧ dzi2 ∧ ∧dzik−1 ∧ dz̄j2 ∧ · · · ∧ dz̄jk = ωi1 ∧ ψ,

where ψ = fdzi2 ∧ · · · ∧ dzik−1 ∧ dz̄j2 ∧ · · · ∧ dz̄jk . Then

dT′(φ) = (−1)2k+1T′(dφ) = −T′(ωi1 ∧ dψ) = −(T′ ∧ π*i1ωi1 )(dψ)

By Lemma 3.1, we have

dT′(φ) =
∫

Br(0)

−〈T′, πi1 , a〉(dψ)dL2(a) =
∫

Br(0)

d〈T′, πi1 , a〉(ψ)dL2(a) = 0

since 〈T′, πi1 , a〉 is a positive real holomorphic (k − 1)-chain and hence d-closed for almost all a. Therefore
by our result in [18], T′ and hence T are real holomorphic k-chains.

4 Applications

In this section,we are going to generalize some results in [18, Section 4] and [12].We�rst give a generalization
of [18, Proposition 4.1] to get rid of the positivity condition on e.
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Proposition 4.1. Let X be a complex projective manifold of complex dimension n and e ∈ An−k,n−k(X) be a
d-closed form. If e considered as a current can be written as

e = R + ddcb

where R is a current such that the (k, k)-part Rk,k of R has �nite mass and H2k-locally �nite support, then e is
homologous to some algebraic cycle with real coe�cients.

Proof. This is a generalization of [18, Proposition 4.1]. In the original proof, we need to additionally assume
that Rk,k is positive to assert that Rk,k is a real holomorphic chain. But by Theorem 1.1, we can directly con-
clude that Rk,k is a real holomorphic chain without the positivity on Rk,k.

Corollary 4.2. Let X be a complex projective manifold of dimension n. Given a smooth d-closed form e ∈
An−k,n−k(X). If e is homologous to a Lipschitz 2k-chain P with rational coe�cients which is dc-closed, then e is
homologous to an algebraic cycle with rational coe�cients.

Proof. By assumption, we have
e = P + da

for some a ∈ D ′2(k+1)(X). Then dce = 0 = dcP + dcda = dcda. So

e = P + ddcb

for some b by the ddc-lemma. Clearly, spt(Pk,k) ⊂ spt(P) andM(Pk,k) ≤M(P) < ∞where Pk,k is the (k, k)-part
of P. Hence by Proposition 4.1 and the rationality of e, e is homologous to an algebraic cycle with rational
coe�cients.

Recall that N lock (M) denotes the group of locally normal k-currents on M.

Corollary 4.3. LetM be a smoothmanifold and T ∈ N lock (M). If there is a constant c > 0 such that Θk(‖T‖, a) ≥
c forHk-a.e. a ∈ spt(T), then spt(T) isHk-locally �nite.

Proof. Let E = {a ∈ spt(T) : Θk(‖T‖, a) < c}. ThenHk(E) = 0. Since T is locally �at, by [5, 4.2.14], ‖T‖(E) = 0.
Let K ⊂ M be any compact subset. Since T is locally normal, ||T||(K) < ∞. By [5, 2.10.19(3)],

||T||(K) ≥ cS k(spt(T) ∩ K − E) ≥ cHk(spt(T) ∩ K − E) = cHk(spt(T) ∩ K)

which implies thatHk(spt(T) ∩ K) < ∞ and hence T isHk-locally �nite.

Theorem 4.4. Let X be a complex manifold and T ∈ N lock,k(X) be d-closed.

1. If there is a constant c > 0 such that Θ2k(‖T‖, a) ≥ c for H2k-a.e. a ∈ spt(T), then T is a real holomorphic
k-chain.

2. If N = {a ∈ X : Θ2k(‖T‖, a) > 0} is H2k-locally �nite and Θ2k(‖T‖, a) > 0 for H2k-a.e. a ∈ spt(T), then T
is a real holomorphic k-chain.

Proof. 1. By Corollary 4.3, T ∈ RRlock,k(X) and spt(T) is H2k-locally �nite. Then by Theorem 1.1, T is a real
holomorphic k-chain.

2. Note that N ⊂ spt(T) andH2k(spt(T) − N) = 0. For any compact set K ⊂ X,

H2k(spt(T) ∩ K) = H2k((spt(T) − N) ∩ K) + H2k(spt(T) ∩ N ∩ K) ≤ H2k(N ∩ K) < ∞

which implies that T hasH2k-locally �nite support. By [17, Theorem 32.1], T ∈ RRlock,k(X) and by Theorem 1.1,
T is a real holomorphic k-chain.
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Harvey and King proved a structure theorem for positive currents in [10] :

Theorem 4.5. Let U ⊂ Cn be an open set. Suppose that u ∈ D ′k,k(U) is positive and d-closed. Assume that for
each compact set K ⊂ U there exists a constant c > 0 such that n(u, a) ≥ c for all a ∈ spt(u) ∩ K. Then there
exists a pure 2k-dimensional subvarieties V of U and positive real numbers aj for each irreducible component
Vj of V such that u =

∑∞
j=1 aj[Vj].

We give an analogous but more general result.

Theorem 4.6. Suppose T ∈ N lock,k(U) and dT = 0. Assume that for each compact set K ⊂ U there exists a
constant c > 0 such that Θ*2k(‖T‖, a) ≥ c for all a ∈ spt(T) ∩ K. Then T is a real holomorphic k-chain.

Proof. Clearly, Θ*2k(‖T‖, a) = 0 for all a ∈ U − spt(T). Hence Θ*2k(‖T‖, a) > 0 for ‖T‖-a.e. a ∈ U. By [17,
Theorem 32.1], T is real recti�able. Since for any �xed a ∈ spt(T) and given any r > 0, there is a c > 0 such
that Θ2k(‖T‖, b) ≥ c forH2k-a.e. b ∈ spt(T) ∩ Br(a). Therefore

∞ > ‖T‖(Br(a) ∩ spt(T)) ≥ cH2k(spt(T) ∩ Br(a))

which implies that spt(T) isH2k-locally �nite. The result follows by Theorem 1.1.

Let M be an oriented Riemannian manifold and V be a compactly supported vector �eld on M. Consider the
�ow {ht} for V where {ht} is a 1-parameter group of di�eomorphisms of M with ht(x) = x for x ∉ supp(V).
LetW be a relatively compact open subset of M such that supp(V) ⊂ W. For T ∈ RRlock (X), let

JT,V (t) = ‖ht*T‖(W)

and
δ(j)(T, V) = J(j)

T,V (0)

the jth derivative of JT,V (t).

Note that δ(j)(T, V) does not depend on the choice ofW since ht(x) = x for x ∈ ̸ supp(V). δ(j)(T, V) is called
the jth variation of T with respect to V.

De�nition 4.7. 1. We say that a current T ∈ RRlock (M) is stationary if δ(1)(T, V) = 0 for all compactly sup-
ported vector �elds V on M.

2. We say that a current T ∈ RRlock (M) is stable if JT,V (t) has a local minimum at t = 0 for all compactly
supported vector �elds V on M.

Remark 4.8. If T is stable, then T is stationary and δ(2)(T, V) ≥ 0.

By [17, 16.1, 16.2, 16.3, 17.8], we have the following theorem :

Theorem 4.9. If T ∈ RRlock (M) is stationary, then the density Θk(‖T‖, x) = limr→0
‖T‖(Br(x))
Ω(k)rk exists at every

point x ∈ U, and Θk(‖T‖, •) is an upper-semi-continuous function in U :

Θk(‖T‖, x) ≥ lim sup
y→x

Θk(‖T‖, y) ∀ x ∈ U .

Corollary 4.10. Let X be a complex manifold. Suppose that T ∈ RRlock,k(X) is stationary and dT = 0. If there is
a constant c > 0 such that Θk(‖T‖, x) is either equal to 0 or larger than c, then T is a real holomorphic k-chain.

Proof. By Theorem 4.9, N = {x ∈ M : Θk(‖T‖, x) > 0} is closed. By [18, Proposition 3.7], we have spt(T) = N.
By [17, Theorem 3.2(1)], for each compact subset K ⊂ U, cH2k(K∩ spt(T)) ≤ ‖T‖(K∩ spt(T)) < ∞. This implies
that spt(T) isH2k-locally �nite. It then follows from Theorem 1.1 that T is a real holomorphic k-chain.
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ForM a compact orientedRiemannianmanifold, Federer andFleming ([6]) showed that the integral homology
groups H*(M,Z) are naturally isomorphic to the homology groups of the chain complex I*(M) with bound-
ary map d. By a simple modi�cation of their proof, we can show that the real homology groups H*(M,R) is
isomorphic to the homology groups of the chain complex of realistic currents RE*(M) which are de�ned as
follows.

De�nition 4.11. Let M be a smooth manifold. We say that T ∈ D ′k(M) is realistic(resp. locally realistic) if
T ∈ RRk(M) and dT ∈ RRk−1(M) (resp. T ∈ RRlock (M) and dT ∈ RRlock−1(M)).

We give real counterparts of homologically volume minimizing currents, stationary currents and stable cur-
rents that appeared in Section 3 of [12].

De�nition 4.12. A current T ∈ RRlock (M) is said to be real homologically volume minimizing if

M(T) ≤M(T + dS)

for all S ∈ RRlock+1(M).

For a complexmanifold X, we denote by RZ +
k(X),RZ −

k(X) the collections of positive and negative real holo-
morphic k-chains on X respectively. Themain tool we are going to use is theWirtinger’s inequality which says
that if X is a compact Kähler manifold with Kähler form ω, then for S ∈ RRlock,k(X),

S( 1
k!ω

k) ≤MX(S)

with equality holding if and only if the tangent 2k-vectors to S are complex and positive ‖S‖-almost every-
where (see [5, 5.4.19]). The following result is a generalization of [12, Proposition 3.1].

Proposition 4.13. Let X be a compact Kähler manifold.

1. If S ∈ RZ +
k(X), then S is real homologically minimizing.

2. If S ∈ RZ k(X), then S is stable.

Proof. (a) For any R ∈ RElock+1(X),

M(S + dR) ≥ (S + dR)( 1
k!ω

k) = S( 1
k!ω

k) = M(S),

since 1
k!ω

k is d-closed.

(b) Suppose S =
∑∞

j=1 rj[Vj] with rj ∈ R. Then S can be expressed as S1 − S2 where S1 and S2 belong
to RZ +

k(X). Let {ht} be a 1-parameter family of di�eomorphisms of X and A = spt(S1) ∩ spt(S2). Since A is
a holomorphic subvariety of complex dimension (k − 1), A has ‖S1‖ and ‖S2‖ measure zero. Hence ht is a
di�eomorphism implies thatM(ht*S) = M(ht*S1) + M(ht*S2). Let H : h0 ' hy be the deformation from h0 to
ht. By the homotopy formula, we have

Si − ht*Si = (−1)kdH*(It × Si), i = 1, 2,

where It = [0, t] or [t, 0]. Hence, by part (a),M(Si) ≤M(ht*Si), i = 1, 2. Therefore,

M(S) = M(S1) + M(S2) ≤M(ht*S1) + M(ht*S2) = M(ht*S).

This shows thatM(ht*S) has a minimum at t = 0 and thus S is stable.

The following is a generalization of [12, Theorem 3.2].
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Theorem 4.14. Let X be a compact Kähler manifold. Suppose that γ ∈ H2k(X,R) has a representative S ∈
RZ +

k(X). If γ has a homologically volume minimizing representative T ∈ RR2k(X) such that N = {x ∈ X :
Θ2k(‖T‖, x) > 0} isH2k-locally �nite, then T ∈ RZ +

k(X).

Proof. Since both S and T belong to γ, there exists a realistic current R ∈ RE2k(X) such that S = T+dR. Hence

M(S) = S( 1
k!ω

k) = (T + dR)( 1
k!ω

k) = T( 1
k!ω

k) ≤M(T).

By assumption,M(S) = M(T). ThereforeM(T) = T( 1
k!ω

k) which implies T is positive. By [18, Theorem 3.9], T
is a positive real holomorphic k-chain.

Corollary 4.15. Let X be a compact Kähler manifold. Suppose that γ ∈ H2k(X,R) has a representative S ∈
RZ +

k(X). If γ has a homologically volume minimizing representative T ∈ RR2k(X) such that spt(T) is H2k-
locally �nite, then T ∈ RZ +

k(X).

If X = CPn (complex projective n-space with the usual Kähler metric), then each 2k-dimensional integral
homology class has a representative either in Z +

k (X) or Z −
k (X). So we also have each 2k-dimensional real

homology class has a representative either in RZ +
k(X) or RZ −

k(X). The integral case of the following result
was obtained by Harvey and Shi�man in [12, Corollary 3.3].

Corollary 4.16. Let T ∈ RR2k(CPn) with dT = 0. Suppose that H2k(spt(T)) < ∞ or there is a constant c > 0
such that Θ2k(‖T‖, x) ≥ c for ‖T‖-almost all x. Then T is real homologically volume minimizing if and only if
either T ∈ RZ +

k(X) or RZ −
k(X).

Proof. For the case H2k(spt(T)) < ∞, the result follows from Theorem 4.14. Now suppose there is a constant
c > 0 such thatΘ2k(‖T‖, x) ≥ c for ‖T‖-almost all x. By the proof of [5, 7.1.7], we can show that every closed real
homologicallyminimizing current ona compact orientedRiemannianmanifold is stable. Then the conclusion
follows by Corollary 4.10. The converse follows by Proposition 4.13.

Theorem 4.17. Let {Tj}∞j=1 be a sequence of real holomorphic k-chains on X with locally uniformly bounded
mass (see [12, Theorem 3.9]). Suppose that ∪∞j=1spt(Tj) isH2k-locally �nite. Then there exists a subsequence of
{Tj}∞j=1 that converges in the locally �at topology to a real holomorphic k-chain.

Proof. By [5, 4.2.17(1)], there exist T ∈ N loc2k (X) and a subsequence {Tjk}
∞
j=1 such that Tjk → T in the locally

�at topology. Since each Tj is of bidimension (k, k), T ∈ N lock,k(X). By assumption and [18, Proposition 3.8],
∪∞j=1spt(Tj) is closed in X. So we have spt(T) ⊂ ∪∞j=1spt(Tj) = ∪∞j=1spt(Tj). By [18, Corollary 2.14], T ∈ RRlock,k(X).
Clearly, T is d-closed. Thus, by Theorem 1.1, T is a real holomorphic k-chain.

Remark 4.18. The condition that ∪∞j=1spt(Tj) is H2k-locally �nite is necessary. Take Tj =
∑j

n=1
1
n2 [ 1

n ] and T =∑∞
n=1

1
n2 [ 1

n ] in C. Then Tj converges to T in mass norm, but T is not a holomorphic chain.
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