Abstract
We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explicit representations of the Lie algebras 𝔰𝔭𝔦𝔶 (8), 𝔰𝔭𝔦𝔶 (7) and 𝔤2, etc.
References
[1] Adams J. F.: Lectures on Exceptional Lie Groups, eds. Zafer Mahmud and Mamoru Mimira, University of Chicago Press, Chicago, 1996.Search in Google Scholar
[2] Adams J. F.: Vector fields of spheres. Ann. of Math. 75 (1962), 603-632.10.2307/1970213Search in Google Scholar
[3] Arizmendi, G.; Herrera, R.: Journal of Geometry and Physics 97, 77-92.10.1016/j.geomphys.2015.07.002Search in Google Scholar
[4] Baez, J.C.: The octonions. Bull. Amer. Math. Soc. 39 (2002), 145-205.Search in Google Scholar
[5] Baum, H.; Friedrich, T.; Grunewald, R.; Kath, I.: Twistor and Killing spinors on Riemannian manifolds. Seminarberichte [Seminar Reports], 108. Humboldt Universität, Sektion Mathematik, Berlin, 1990. 179 pp.Search in Google Scholar
[6] Brauer, R.; Weyl, H.: American Journal of Mathematics 57, No. 2 (Apr., 1935), pp. 425-44910.2307/2371218Search in Google Scholar
[7] Budinich, M.: On Clifford algebras and binary integers. (English summary) Adv. Appl. Clifford Algebr. 27 (2017), no. 2, 1007-1017Search in Google Scholar
[8] Budinich, P.; Trautman, A.: Fock space description of simple spinors Journal of Mathematical Physics 30, 2125 (1989)10.1063/1.528214Search in Google Scholar
[9] Cartan, E.: Le principe de dualitét la théorie des groupes simples et semi-simples. Bulletin sc. Math. (2) 49, 361-374 (1925).Search in Google Scholar
[10] Cartan, E.: The theory of spinors. The M.I.T. Press, Cambridge, Mass. 1967 viii+157 pp. 53.38Search in Google Scholar
[11] Friedrich T. ; Sulanke. S.: Ein Kriterium für die formale Selbstadjungiertheit des Dirac-Operators. Coll. Math. vol. XL, Fasc. 2 (1979), 239-24710.4064/cm-40-2-239-247Search in Google Scholar
[12] Friedrich, T.: Dirac operators in Riemannian geometry. Translated from the 1997 German original by Andreas Nestke. Graduate Studies in Mathematics, 25. American Mathematical Society, Providence, RI, 2000. xvi+195 pp. ISBN: 0-8218-2055-9.Search in Google Scholar
[13] Harvey, F. R.: Spinors and calibrations. Perspectives in Mathematics, 9. Academic Press, Inc., Boston, MA, 1990. xiv+323 pp.Search in Google Scholar
[14] Husemoller, D.: Fibre bundles. Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994. xx+353 pp. ISBN: 0-387-94087-110.1007/978-1-4757-2261-1_1Search in Google Scholar
[15] A. Hurwitz, A.: Uber die Komposition der quadratischen Formen, Math. Ann. 88 (1922) 1–25., reproduced in Mathematische Werke: Zahlentheorie, Algebra und Geometrie,.Band II, Birkhäuser (1963), 641-666.Search in Google Scholar
[16] Lawson, H. B., Jr.; Michelsohn, M.-L.: Spin geometry. Princeton Mathematical Series, 38. Princeton University Press, Princeton, NJ, 1989. xii+427 pp. ISBN: 0-691-08542-0Search in Google Scholar
[17] Lounesto, P.: Octonions and triality. Adv. Appl. Clifford Algebras 11 (2001), no. 2, 191-213 (2002)Search in Google Scholar
[18] Lounesto, P.: Clifford algebras and spinors. London Mathematical Society Lecture Note Series, 239. Cambridge University Press, Cambridge, 1997. x+306 pp. ISBN: 0-521-59916-4Search in Google Scholar
[19] Ognikyan, A.A.: Combinatorial Construction of Tangent Vector Fields on Spheres, Math. Notes 83 (2008) 590-605.Search in Google Scholar
[20] Parton, M.; Piccinni, P.: Spheres with more than 7 vector fields: All the fault of Spin(9). Linear Algebra and its Applications 438 (2013) 1113-1131.Search in Google Scholar
© 2020 Gerardo Arizmendi et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.