Abstract
Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M.
References
[1] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, Jour. Differ. Geom.18 (1983), 755–782.10.4310/jdg/1214438181Search in Google Scholar
[2] R. Donagi, L. Ein and R. K. Lazarsfeld, Nilpotent cones and sheaves on K3 surfaces, Birational algebraic geometry (Baltimore, MD, 1996), 51–61, Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997.10.1090/conm/207/02719Search in Google Scholar
[3] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.Search in Google Scholar
[4] N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J.54 (1987), 91–114.10.1215/S0012-7094-87-05408-1Search in Google Scholar
[5] N. J. Hitchin, The moduli space of complex Lagrangian submanifolds, Asian Jour. Math.3 (1999), 77–91.10.4310/AJM.1999.v3.n1.a4Search in Google Scholar
[6] R. C. McLean, Deformations of calibrated submanifolds, Comm. Anal. Geom.6 (1998), 705–747.10.4310/CAG.1998.v6.n4.a4Search in Google Scholar
[7] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math.77 (1984), 101–116.10.1007/BF01389137Search in Google Scholar
[8] C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry (Trieste, 1989/Bergen, 1989), 294–303, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992.10.1017/CBO9780511662652.022Search in Google Scholar
[9] K. Yano and S, Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953.10.1515/9781400882205Search in Google Scholar
[10] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math.31 (1978), 339–411.10.1002/cpa.3160310304Search in Google Scholar
© 2020 Indranil Biswas et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.