Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access February 20, 2022

Deformation theory of holomorphic Cartan geometries, II

  • Indranil Biswas EMAIL logo , Sorin Dumitrescu and Georg Schumacher
From the journal Complex Manifolds

Abstract

In this continuation of [4], we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.

MSC 2010: 32G13; 53C55

References

[1] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.10.1090/S0002-9947-1957-0086359-5Search in Google Scholar

[2] N. Bergeron and T. Gelander, A note on local rigidity, Geom. Dedicata 107 (2004), 111–131.10.1023/B:GEOM.0000049122.75284.06Search in Google Scholar

[3] I. Biswas and S. Dumitrescu, Generalized holomorphic Cartan geometries, European J. Math. 6 (special issue dedicated to the memory of Stefan Papadima) (2020), 661–680.10.1007/s40879-019-00327-6Search in Google Scholar

[4] I. Biswas, S. Dumitrescu and G. Schumacher, Deformation theory of holomorphic Cartan geometries, Indag. Math. 31 (2020), 512–524.10.1016/j.indag.2020.03.008Search in Google Scholar

[5] R. D. Canary, D. B. A. Epstein and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), 3–92, London Math. Soc. Lecture Note Ser., 111, Cambridge Univ. Press, Cambridge, 1987.Search in Google Scholar

[6] T. Chen, The associated map of the nonabelian Gauss–Manin connection, Cent. Eur. Jour. Math. 10 (2012), 1407–1421.10.2478/s11533-011-0110-3Search in Google Scholar

[7] C. Ehresmann, Sur les espaces localement homogènes, L’Enseign. Math. 35 (1936), 317–333.Search in Google Scholar

[8] E. Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2, ℂ), Jour. Reine Angew. Math. 468 (1995), 113–138.10.1515/crll.1995.468.113Search in Google Scholar

[9] W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), 200–225.10.1016/0001-8708(84)90040-9Search in Google Scholar

[10] W. M. Goldman and J. J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43–96.10.1007/BF02699127Search in Google Scholar

[11] R. C. Gunning, On uniformization of complex manifolds: the role of connections, Princeton Univ. Press, 1978.Search in Google Scholar

[12] M. S. Raghunathan, Vanishing theorems for cohomology groups associate to discrete subgroups of semi-simple Lie groups, Osaka Math. Jour. 3 (1966), 243–256, corrections ibid. 16, (1979), 295–299.Search in Google Scholar

[13] R. W. Sharpe, Di˙erential Geometry : Cartan’s Generalization of Klein’s Erlangen Program, Graduate Text Math., 166, Springer-Verlag, New York, Berlin, Heidelberg, 1997.Search in Google Scholar

[14] H.-P. de Saint Gervais, Uniformization of Riemann Surfaces. Revisiting a hundred year old theorem, E.M.S., 2016.10.4171/145Search in Google Scholar

[15] Y. Wakabayashi, Frobenius-Ehresmann structures and Cartan geometries in positive characteristic, arXiv:2109.02826.Search in Google Scholar

Received: 2021-11-29
Accepted: 2022-01-19
Published Online: 2022-02-20

© 2022 Indranil Biswas et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.1515/coma-2021-0129/html
Scroll to top button