Abstract
The Hilbert spaces ℋw consisiting of Dirichlet series
References
[1] M. Bailleul, O. F. Brevig, The composition operators on Bohr-Bergman spaces of Dirichlet series, Ann. Acad. Sci. Fenn. Math. 1, 41 (2016)10.5186/aasfm.2016.4104Search in Google Scholar
[2] J. Gordon, H. Hedenmalm, The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J. 2, 46 (1999)10.1307/mmj/1030132413Search in Google Scholar
[3] H. Hedenmalm, P. Lindqvist, K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 1, 86 (1997)10.1215/S0012-7094-97-08601-4Search in Google Scholar
[4] J. L. Nicolas, Sur la distribution des nombres entiers ayant une quantité fixée de facteurs premiers, Acta Arith. 3, 44 (1984)10.4064/aa-44-3-191-200Search in Google Scholar
[5] J. F. Olsen, Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 9, 261 (2011)10.1016/j.jfa.2011.07.007Search in Google Scholar
[6] H. Quffélec, K. Seip, Approximation numbers of composition operators on the M2 space of Dirichlet series, J. Funct. Anal. 6, 268 (2015)10.1016/j.jfa.2014.11.022Search in Google Scholar
[7] G. Tenenbaum, Introduction to analytic and probabilistic number theory, (Cambridge University Press, Cambridge, 1995)Search in Google Scholar
[8] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 4, 274 (1934)10.1112/jlms/s1-9.4.274Search in Google Scholar
© 2018 Jing Zhao, published by De Gruyter
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.