Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 9, 2022

Weighted composition operators on Hardy–Smirnov spaces

  • Valentin Matache EMAIL logo
From the journal Concrete Operators

Abstract

Operators of type fψfφ acting on function spaces are called weighted composition operators. If the weight function ψ is the constant function 1, then they are called composition operators. We consider weighted composition operators acting on Hardy–Smirnov spaces and prove that their unitarily invariant properties are reducible to the study of weighted composition operators on the classical Hardy space over a disc. We give examples of such results, for instance proving that Forelli’s theorem saying that the isometries of non–Hilbert Hardy spaces over the unit disc need to be special weighted composition operators extends to all non–Hilbert Hardy–Smirnov spaces. A thorough study of boundedness of weighted composition operators is performed.

References

[1] Ahlfors L. V., Conformal Invariants, Topics in Geometric Function Theory, McGraw–Hill, New York 1973.Search in Google Scholar

[2] Aronszajn N., Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950), 337–404.10.1090/S0002-9947-1950-0051437-7Search in Google Scholar

[3] Attele K. R. M., Multipliers of the range of composition operators, Tokyo J. Math., 15(1992), no. 1, 185–198.Search in Google Scholar

[4] Beurling A., On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1948), 239—255.Search in Google Scholar

[5] Bose S.; Muthukumar P.; Sarkar J., Beurling type invariant subspaces of composition operators, J. Operator Theory 86(2021), no. 2, 425—438.Search in Google Scholar

[6] Bourdon P.; Narayan S. K., Normal weighted composition operators on the Hardy space. J. Math. Anal. Appl, 367(2010) 278–286.10.1016/j.jmaa.2010.01.006Search in Google Scholar

[7] Contreras M. D.; Hernández–Díaz A. G., Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), no. 1, 224—233.Search in Google Scholar

[8] Contreras M. D.; Hernández–Díaz A. G., Weighted composition operators between different Hardy spaces, Integral Equ. Oper. Theory 46(2003) 165–188.10.1007/s000200300023Search in Google Scholar

[9] Cowen C. C.; Wahl R. G., Shift-invariant subspaces invariant for composition operators on the Hardy–Hilbert space, Proc. Amer. Math. Soc. 142(2014), no. 12, 4143—4154.Search in Google Scholar

[10] Duren P., Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York–London 1970.Search in Google Scholar

[11] Forelli F., The isometries of Hp, Canad. J. Math., 16(1964), 721–728.10.4153/CJM-1964-068-3Search in Google Scholar

[12] Gallardo–Gutiérrez E. A.; Kumar R.; Partington J. R., Boundedness, compactness and Schatten–class membership of weighted composition operators, Integral Equations Operator Theory 67(2010), no. 4, 467—479.Search in Google Scholar

[13] Galé J. E.; Matache V.; Miana P. J.; Sánchez–Lajusticia L., Hilbertian Hardy–Sobolev spaces on a half–plane, J. Math. Anal. Appl. 489(2020), no. 1, 124131, 25 pp.10.1016/j.jmaa.2020.124131Search in Google Scholar

[14] Gunatillake G., Invertible weighted composition operators, J. Funct. Anal. 261 (2011), no. 3, 831–860.Search in Google Scholar

[15] Harper Z., Applications of the discrete Weiss conjecture in operator theory, Integral Equ. Oper. Theory 54(2006), no. 1, 69–88.Search in Google Scholar

[16] Harper Z.; Smith M.P., Testing Schatten class Hankel operators, Carleson embeddings and weighted composition operators on reproducing kernels, J. Oper. Theory 55(2006), no. 2, 349–371.Search in Google Scholar

[17] Kale C.; Matache V.; Tsujii M.; Verbytskyi E.; Invariant densities for random continued fractions, J. Math. Anal. Appl., 512(2022), 126163.10.1016/j.jmaa.2022.126163Search in Google Scholar

[18] Klein E. M., The numerical range of a Toeplitz operator, Proc. Amer. Math. Soc., 35(1972), no. 1, 101–103.Search in Google Scholar

[19] Kumar R.; Partington J. R., Weighted composition operators on Hardy and Bergman spaces, Recent advances in operator theory, operator algebras, and their applications, 157–167, Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005.10.1007/3-7643-7314-8_9Search in Google Scholar

[20] Lefévre P.; Li D.; Queffélec H.; Rodríguez–Piazza L., Compactification, and beyond, of composition operators on Hardy spaces by weights, Ann. Fenn. Math. 46(2021), no. 1, 43–57.Search in Google Scholar

[21] Lechner G.; Li D.; Queffélec H.; Rodríguez–Piazza L., Approximation numbers of weighted composition operators, J. Funct. Anal. 274(2018), no. 7, 1928—1958.Search in Google Scholar

[22] Matache V., Composition operators on Hardy spaces of a half–plane, Proc. Amer. Math. Soc. 127(1999), no. 5, 1483—1491.Search in Google Scholar

[23] Matache V., Weighted composition operators on H2 and applications, Complex Anal. Oper. Theory 2(2008), no. 1, 169–197.Search in Google Scholar

[24] Matache V., Isometric weighted composition operators, New York J. Math. 20(2014), 711—726.Search in Google Scholar

[25] Matache V., Invariant subspaces of composition operators, J. Operator Theory 73(2015), no. 1, 243—264.Search in Google Scholar

[26] Matache V., Problems on weighted and unweighted composition operators. Complex analysis and dynamical systems, 191— 217, Trends Math., Birkhäuser/Springer, 2018.10.1007/978-3-319-70154-7_11Search in Google Scholar

[27] Matache V., Composition operators similar to contractions. Acta Sci. Math. (Szeged) 85(2019), no. 3–4, 561—571.Search in Google Scholar

[28] Matache, V., Weighted composition operators on the Hilbert Hardy space of a half-plane, Complex Var. Elliptic Equ. 65(2020), no. 3, 498—524.Search in Google Scholar

[29] Muthukumar P.; Sarkar J., Model spaces invariant under composition operators. preprint 2022.10.4153/S0008439522000236Search in Google Scholar

[30] Rudin W., Real and Complex Analysis, Third edition, McGraw–Hill Book Co., New York, 1987.Search in Google Scholar

[31] Shapiro J. H.; Taylor P. D., Compact, nuclear, and Hilbert–Schmidt composition operators on H2, Indiana Univ. Math. J. 23(1973/74), 471—496.10.1512/iumj.1974.23.23041Search in Google Scholar

[32] Shapiro J. H., Composition Operators and Classical Function Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1993.10.1007/978-1-4612-0887-7Search in Google Scholar

[33] Shapiro J. H., What do composition operators know about inner functions?, Monatsh. Math. 130(2000), no. 1, 57–70.Search in Google Scholar

[34] Shapiro J. H.; Smith W., Hardy spaces that support no compact composition operators, J. Functional Analysis, 205(2003), 62–89.10.1016/S0022-1236(03)00215-5Search in Google Scholar

[35] Vukotić D., Analytic Toeplitz operators on the Hardy space Hp: a survey, Bull. Belg. Math. Soc. Simon Stevin 10(2003), no. 1, 101—113.Search in Google Scholar

Received: 2022-04-20
Accepted: 2022-10-03
Published Online: 2022-12-09

© 2022 Valentin Matache, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 20.3.2023 from https://www.degruyter.com/document/doi/10.1515/conop-2022-0136/html
Scroll Up Arrow