Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 29, 2014

Prediction of Fischer–Tropsch Synthesis Kinetic Parameters Using Neural Networks

Fabiano A. N. Fernandes, Francisco E. Linhares-Junior and Samuel J. M. Cartaxo

Abstract

The kinetic mechanism of the Fischer–Tropsch synthesis (FTS) is complex resembling a polymerization reaction. The kinetic rate constants for initiation, propagation and termination steps and the constants for the equilibrium reactions for methylene formation (in situ monomer) need to be estimated. A mathematical model for the FTS allows for simulating several operating conditions and determining the best operating conditions to produce a specific product distribution, so the kinetic parameters must be statistically valid. This work used neural networks (NNs) to estimate the FTS kinetic parameters, instead of using methods based on least squared error. The results show that NNs with three hidden layers were able to output good estimates of the kinetic parameters with less than 5% of deviation.

References

1. MarettoC, KrishnaR. Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis. Catal Today1999;52:27989.10.1016/S0920-5861(99)00082-6Search in Google Scholar

2. Van der LaanGP, BeenackersAA, KrishnaR. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors. Chem Eng Sci1999;54:501319.10.1016/S0009-2509(99)00225-0Search in Google Scholar

3. KrishnaR, SieST. Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Process Technol2000;64:73105.10.1016/S0378-3820(99)00128-9Search in Google Scholar

4. WangY, MaW, LuY, YangJ, XuY, XiangH, et al. Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe – Cu – K catalyst. Fuel2003;82:195213.10.1016/S0016-2361(02)00154-0Search in Google Scholar

5. FernandesFA, SousaEM. Fischer-Tropsch synthesis product grade optimization in a fluidized bed reactor. AIChE J2006;52:284450.10.1002/aic.10887Search in Google Scholar

6. FernandesFA. Optimization of Fischer-Tropsch synthesis using neural networks. Chem Eng Technol2006;29:44953.10.1002/ceat.200500310Search in Google Scholar

7. FernandesFA, TelesUM. Modeling and optimization of Fischer–Tropsch products hydrocracking. Fuel Process Technol2007;88:20714.10.1016/j.fuproc.2006.09.003Search in Google Scholar

8. MazzoneLC, FernandesFA. Modeling of Fischer-Tropsch synthesis in a tubular reactor. Lat Am Appl Res2006;36:1418.Search in Google Scholar

9. SchulzH, ClaeysM. Kinetic modelling of Fischer–Tropsch product distributions. Appl Catal A Gen1999;186:91107.10.1016/S0926-860X(99)00166-0Search in Google Scholar

10. SteenE, VanSH. Polymerisation kinetics of the Fischer–Tropsch CO hydrogenation using iron and cobalt based catalysts. Appl Catal A Gen1999;186:30920.10.1016/S0926-860X(99)00151-9Search in Google Scholar

11. LoxES, FromentGF. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling. Ind Eng Chem Res1993;32:7182.10.1021/ie00013a011Search in Google Scholar

12. Van der LaanGP, BeenackersAA. Hydrocarbon selectivity model for the gas-solid Fischer–Tropsch synthesis on precipitated iron catalysts. Ind Eng Chem Res1999;38:127790.10.1021/ie980561nSearch in Google Scholar

13. ZimmermanW, BukurD, LedakowiczS. Kinetic model of Fischer–Tropsch synthesis selectivity in the slurry phase. Chem Eng Sci1992;47:270712.10.1016/0009-2509(92)87117-9Search in Google Scholar

14. PatzlaffJ, LiuY, GraffmannC, GaubeJ. Interpretation and kinetic modeling of product distributions of cobalt catalyzed Fischer–Tropsch synthesis. Catal Today2002;71:38194.10.1016/S0920-5861(01)00465-5Search in Google Scholar

15. PatzlaffJ, LiuY, GraffmannC, GaubeJ. Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis. Appl Catal A Gen1999;186:10919.10.1016/S0926-860X(99)00167-2Search in Google Scholar

16. FernandesFA. Polymerization kinetics of Fischer-Tropsch reaction on iron based catalysts and product grade optimization. Chem Eng Technol2005;28:9308.10.1002/ceat.200500036Search in Google Scholar

17. FernandesFA. Modeling and product grade optimization of Fischer–Tropsch synthesis in a slurry reactor. Ind Eng Chem Res2006;45:104757.10.1021/ie0507732Search in Google Scholar

18. ZhangR, ChangJ, XuY, CaoL, LiY, ZhouJ. Kinetic model of product distribution over Fe catalyst for Fischer–Tropsch synthesis. Energy Fuels2009;23:47407.10.1021/ef801079uSearch in Google Scholar

19. IglesiaE, ReyesSC, MadonRJ, SoledSL, ControlS. Catalyst design in the Fischer-Tropsch synthesis: sites, pellets, and reactors. Adv Catal1993;39:221302.10.1016/S0360-0564(08)60579-9Search in Google Scholar

20. YangJ, LiuY, ChangJ, WangYN, BaiL, XuYY, et al. Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe–Mn catalyst. Ind Eng Chem Res2003;42:506690.10.1021/ie030135oSearch in Google Scholar

21. ChangJ, BaiL, TengB, ZhangR, YangJ, XuY, et al. Kinetic modeling of Fischer-Tropsch synthesis over Fe–Cu–K–SiO2 catalyst in slurry phase reactor. Chem Eng Sci2007;62:498391.10.1016/j.ces.2006.12.031Search in Google Scholar

22. AnfrayJ, BremaudM, FongarlandP, KhodakovA, JallaisS, SchweighD. Kinetic study and modeling of Fischer-Tropsch reaction over a co/Al2O3 catalyst in a slurry reactor. Chem Eng Sci2007;62:53536.10.1016/j.ces.2006.12.035Search in Google Scholar

23. TodicB, BhateliaT, FromentGF, MaW, JacobsG, DavisBH, et al. Kinetic model of Fischer-Tropsch synthesis in a slurry reactor on co-re/Al2O3 catalyst. Ind Eng Chem Res2013;52:66979.10.1021/ie3028312Search in Google Scholar

24. Van SantenRA, CiobicaIM, van SteenE, GhouriMM. Mechanistic issues in Fischer-Tropsch catalysis. Adv Catal2011;54:12787.10.1016/B978-0-12-387772-7.00003-4Search in Google Scholar

25. FernandesFA, LonaLM. Development of polymer resins using neural networks. Polímeros Ciência Tecnol2002;12:16470.10.1590/S0104-14282002000300008Search in Google Scholar

26. FernandesFA. Selection of a mixture of initiators for batch polymerization using neural networks. J Appl Polym Sci2005;5:208893.10.1002/app.22421Search in Google Scholar

27. FernandesFA, RodriguesS. Optimization of panose production by enzymatic synthesis using neural networks. Process Biochem2006;41:10906.10.1016/j.procbio.2005.11.020Search in Google Scholar

28. OverettMJ, HillRO, MossJR. Organometallic chemistry and surface science: mechanistic models for the Fischer–Tropsch synthesis. Coord Chem Rev2000;206–207:581605.10.1016/S0010-8545(00)00249-6Search in Google Scholar

29. BradyRC, PettitR. Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction. J Am Chem Soc1980;102:61812.10.1021/ja00539a053Search in Google Scholar

30. BradyRC, PettitR. On the mechanism of the Fischer-Tropsch reaction. The chain propagation step. J Am Chem Soc1981;103:12879.10.1021/ja00395a081Search in Google Scholar

31. MaitlisPM, QuyoumR, LongHC, TurnerML. Towards a chemical understanding of the Fischer–Tropsch reaction: alkene formation. Appl Catal A Gen1999;186:36374.10.1016/S0926-860X(99)00155-6Search in Google Scholar

32. WangYN, MaWP, LuYJ, YangJ, XuYY, XiangHW, et al. Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst. Fuel2003;82:195213.10.1016/S0016-2361(02)00154-0Search in Google Scholar

33. FernandesFA, LonaLM. Neural network applications in polymerization processes. Braz J Chem Eng2005;22:40118.10.1590/S0104-66322005000300009Search in Google Scholar

34. FernandesFA, LonaLM, PenlidisA. Inverse modeling applications in emulsion polymerization of vinyl acetate. Chem Eng Sci2004;59:315967.10.1016/j.ces.2004.04.003Search in Google Scholar

Published Online: 2014-4-29
Published in Print: 2014-12-1

©2014 by De Gruyter