Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 28, 2016

CFD Modeling and Operation Strategies for Hetero-/Homogeneous Combustion of Methane-Air Mixtures in Catalytic Microreactors Using Detailed Chemical Kinetics

Junjie Chen and Baofang Liu

Abstract

The hetero-/homogeneous combustion of methane-air mixtures in platinum-coated microreactors was investigated by means of two-dimensional CFD (computational fluid dynamics) simulations with detailed chemical reaction schemes, detailed species transport, and heat transfer mechanisms in the solid wall. Detailed homogeneous and heterogeneous chemical kinetic mechanisms are employed to describe the chemistry. The effects of the reactor size, inlet velocity and feed composition were elucidated. Operation strategies for controlling the heterogeneous and homogeneous chemistry in heterogeneous-homogeneous microreactors were developed. Simulations using these mechanisms suggested that homogeneous chemistry can be sustained for gaps well below the quenching distance because of enhanced catalyst-induced heating. This finding has very important ramifications for catalyst safety and lifetime, as well as can be used to produce chemicals, e. g. in oxidative coupling and oxidative dehydrogenation reactions. The proportion of heterogeneous and homogeneous contributions depends strongly upon the reactor operating conditions. Reactor size plays a vital role in the homogeneous chemistry contribution. Smaller reactors result in reduced homogeneous chemistry contribution. Pure heterogeneous chemistry can occur under certain proper conditions, such as heat loss/heat exchange rates, feed compositions, and flow rates. The competition or synergism between homogeneous and heterogeneous chemistry was delineated.

Funding statement: This work was supported by the National Natural Science Foundation of China (No. 51506048).

References

1. Ghermay Y, Mantzaras J, Bombach R. Experimental and numerical investigation of hetero-/homogeneous combustion of CO/H2/O2/N2 mixtures over platinum at pressures up to 5 bar. Proc Combust Inst 2011;33(2):1827–35.10.1016/j.proci.2010.06.135Search in Google Scholar

2. Jeon SW, Yoon WJ, Jeong MW, Kim Y. Optimization of a counter-flow microchannel reactor using hydrogen assisted catalytic combustion for steam reforming of methane. Int J Hydrogen Energy 2014 Apr 15;39(12):6470–8.10.1016/j.ijhydene.2014.02.012Search in Google Scholar

3. Um JE, Yoon WJ, Choi HW, Kim WJ. Effective modification of Pd surfaces with TiO2 promoters using selective chemical vapor deposition and the effect on catalytic performance improvement. J Ind Eng Chem 2014 Nov 25;20(6):4183–7.10.1016/j.jiec.2014.01.018Search in Google Scholar

4. Al-Musa A, Shabunya S, Martynenko V, Kalinin V. Effect of active thermal insulation on methane and carbon dioxide concentrations in the effluent of a catalytic partial oxidation reactor for natural gas conversion to synthesis gas. Chem Eng J 2015 Dec 1;281:852–9.10.1016/j.cej.2015.07.041Search in Google Scholar

5. Seyednejadian S, Yaghobi N, Maghrebi R, Vafajoo L. CFD modeling of reaction and mass transfer through a single pellet: Catalytic oxidative coupling of methane. J Nat Gas Chem 2011 Jul;20(4):356–63.10.1016/S1003-9953(10)60206-XSearch in Google Scholar

6. Che-Galicia G, Ruiz-Martínez RS, López-Isunza F, Castillo-Araiza CO. Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in an industrial-scale packed bed catalytic reactor. Chem Eng J 2015 Nov 15;280:682–94.10.1016/j.cej.2015.05.128Search in Google Scholar

7. Zhang Z, Lu Q, Ye X, Li W, Hu B, Dong C. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. Energy Convers Manage 2015 Dec;106:1309–17.10.1016/j.enconman.2015.10.063Search in Google Scholar

8. Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers Manage 2015 Nov 15;105:338–54.10.1016/j.enconman.2015.07.078Search in Google Scholar

9. Zhang Bo, Zhong Z, Chen P, Ruan R. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresour Technol 2015 Dec;197:79–84.10.1016/j.biortech.2015.08.063Search in Google Scholar

10. Norton DG, Wetzel ED, Vlachos DG. Fabrication of single-channel catalytic microburners: effect of confinement on the oxidation of hydrogen/air mixtures. Ind Eng Chem Res 2004;43(16):4833–40.10.1021/ie049798bSearch in Google Scholar

11. Tolmachoff ED, Booth AD, Lee IC, Allmon WR, Waits CM. Modeling and experimental analysis of n-dodecane oxidation in platinum-coated channels. Combust Flame 2015 Oct;162(10):3674–80.10.1016/j.combustflame.2015.07.006Search in Google Scholar

12. Uriz I, Arzamendi G, Diéguez PM, Echave FJ, Sanz O, Montes M, et al. CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors. Chem Eng J 2014 15 Feb;238:37–44.10.1016/j.cej.2013.05.097Search in Google Scholar

13. Stefanidis GD, Vlachos DG. Controlling homogeneous chemistry in homogeneous-heterogeneous reactors: application to propane combustion. Ind Eng Chem Res 2009;48(13):5962–8.10.1021/ie801480mSearch in Google Scholar

14. Shaker M, Ghaedamini H, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS. Numerical investigation of laminar mass transport enhancement in heterogeneous gaseous microreactors. Chem Eng Process Process Intensif 2012 Apr;54:1–11.10.1016/j.cep.2012.02.001Search in Google Scholar

15. Isert S, Groven LJ, Lucht RP, Son SF. The effect of encapsulated nanosized catalysts on the combustion of composite solid propellants. Combust Flame 2015 May;162(5):1821–8.10.1016/j.combustflame.2014.11.040Search in Google Scholar

16. Stathopoulos P, Paschereit CO. Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants. Appl Energy 2015 Sept 15;154:438–46.10.1016/j.apenergy.2015.05.034Search in Google Scholar

17. Mills PL, Quiram DJ, Ryley JF. Microreactor technology and process miniaturization for catalytic reactions-A perspective on recent developments and emerging technologies. Chem Eng Sci 2007 Dec;62(24):6992–7010.10.1016/j.ces.2007.09.021Search in Google Scholar

18. Akbari MH, Sharafian Ardakani AH, Andisheh Tadbir M. A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications. Chem Eng J 2011 Feb 1;166(3):1116–25.10.1016/j.cej.2010.12.044Search in Google Scholar

19. Fazeli A, Behnam M. Hydrogen production in a zigzag and straight catalytic wall coated micro channel reactor by CFD modeling. Int J Hydrogen Energy 2010 Sept;35(17):9496–503.10.1016/j.ijhydene.2010.05.052Search in Google Scholar

20. Rizzuto E, Palange P, Del Prete Z. Characterization of an ammonia decomposition process by means of a multifunctional catalytic membrane reactor. Int J Hydrogen Energy 2014 Jul 24;39(22):11403–10.10.1016/j.ijhydene.2014.05.161Search in Google Scholar

21. Gribovskiy AG, Makarshin LL, Andreev DV, Klenov OP, Parmon VN. Thermally autonomous microchannel reactor to produce hydrogen in steam reforming of methanol. Chem Eng J 2015 Aug 1;273:130–7.10.1016/j.cej.2015.03.036Search in Google Scholar

22. Maruta K, Takeda K, Ahn J, Borer K, Sitzki L, Ronney PD, et al. Extinction limits of catalytic combustion in microchannels. Proc Combust Inst 2002;29(1):957–63.10.1016/S1540-7489(02)80121-3Search in Google Scholar

23. Stefanidis GD, Kaisare NS, Vlachos DG. Modeling ignition in catalytic microreactors. Chem Eng Technol 2008 Aug;31(8):1170–5.10.1002/ceat.200800238Search in Google Scholar

24. Kizaki Y, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Effect of radical quenching on CH4/air flames in a micro flow reactor with a controlled temperature profile. Proc Combust Inst 2015;35(3):3389–96.10.1016/j.proci.2014.07.030Search in Google Scholar

25. Norton DG, Vlachos DG. Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners. Proc Combust Inst 2005 Jan;30(2):2473–80.10.1016/j.proci.2004.08.188Search in Google Scholar

26. Pfefferle LD. Heterogeneous/homogeneous reactions and transport coupling for catalytic combustion systems: a review of model alternatives. Catal Today 1995 12 Dec;26(3–4):255–65.10.1016/0920-5861(95)00147-7Search in Google Scholar

27. Zhang DK. Bifurcation behavior in a homogeneous-heterogeneous reaction system with a constant power source. Combust Flame 1994 Jan;96(1–2):171–8.10.1016/0010-2180(94)90168-6Search in Google Scholar

28. Chattopadhyay S, Veser G. Heterogeneous-homogeneous interactions in catalytic microchannel reactors. AIChE J 2006 Jun;52(6):2217–29.10.1002/aic.10825Search in Google Scholar

29. Zerkle DK, Allendorf MD, Wolf M, Deutschmann O. Understanding homogeneous and heterogeneous contributions to the platinum-catalyzed partial oxidation of ethane in a short-contact-time reactor. J Catal 2000 Nov 15;196(1):18–39.10.1006/jcat.2000.3009Search in Google Scholar

30. Di Benedetto A, Di Sarli V, Russo G. A novel catalytic-homogenous micro-combustor. Catal Today 2009 Sept;147(Supplement):S156–S161.10.1016/j.cattod.2009.07.030Search in Google Scholar

31. Schultze M, Mantzaras J. Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum: fuel-lean versus fuel-rich combustion modes. Int J Hydrogen Energy 2013 Aug 21;38(25):10654–70.10.1016/j.ijhydene.2013.06.069Search in Google Scholar

32. Schultze M, Mantzaras J, Grygier F, Bombach R. Hetero-/homogeneous combustion of syngas mixtures over platinum at fuel-rich stoichiometries and pressures up to 14 bar. Proc Combust Inst 2015;35(2):2223–31.10.1016/j.proci.2014.05.018Search in Google Scholar

33. Brambilla A, Frouzakis CE, Mantzaras J, Tomboulides A, Kerkemeier S, Boulouchos K. Detailed transient numerical simulation of H2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer. Combust Flame 2014 Oct;161(10):2692–707.10.1016/j.combustflame.2014.04.003Search in Google Scholar

34. Fluent 6.3 user’s guide. Lebanon, New Hampshire: Fluent Inc., 2006.Search in Google Scholar

35. Kee RJ, Rupley FM, Meeks E, Miller JA. CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas phase chemical and plasma kinetics. Report No. SAND96-8216, Technical Report, Sandia National Laboratories, 1996.10.2172/481621Search in Google Scholar

36. Deutschmann O, Maier LI, Riedel U, Stroemman AH, Dibble RW. Hydrogen assisted catalytic combustion of methane on platinum. Catal Today 2000 Jun 10;59(1–2):141–50.10.1016/S0920-5861(00)00279-0Search in Google Scholar

37. Dogwiler U, Benz P, Mantzaras J. Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions. Combust Flame 1999 Jan;116(1–2):243–58.10.1016/S0010-2180(98)00036-4Search in Google Scholar

38. Cuoci A, Frassoldati A, Faravelli T, Ranzi E. Extinction of laminar, premixed, counter-flow methane/air flames under unsteady conditions: effect of H2 addition. Chem Eng Sci 2013 Apr 19;93:266–76.10.1016/j.ces.2013.02.009Search in Google Scholar

39. Wan J, Fan A, Yao H, Liu W. Effect of thermal conductivity of solid wall on combustion efficiency of a micro-combustor with cavities. Energy Convers Manage 2015 May 15;96:605–12.10.1016/j.enconman.2015.03.030Search in Google Scholar

40. Reinke M, Mantzaras J, Schaeren R, Bombach R, Inauen A, Schenker S. High-pressure catalytic combustion of methane over platinum: in situ experiments and detailed numerical predictions. Combust Flame 2004 Jan;136(1–2):217–40.10.1016/j.combustflame.2003.10.003Search in Google Scholar

41. Schneider A, Mantzaras J, Jansohn P. Experimental and numerical investigation of the catalytic partial oxidation of CH4/O2 mixtures diluted with H2O and CO2 in a short contact time reactor. Chem Eng Sci 2006 Jul;61(14):4634–49.10.1016/j.ces.2006.02.038Search in Google Scholar

42. Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-Mech 3.0. February 2000. Available from: http://combustion.berkeley.edu/gri-mech/Search in Google Scholar

43. Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley AP, et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog Energy Combust Sci 2012 Aug;38(4):468–501.10.1016/j.pecs.2012.03.004Search in Google Scholar

44. Cuoci A, Frassoldati A, Faravelli T, Ranzi E. Formation of soot and nitrogen oxides in unsteady counterflow diffusion flames. Combust Flame 2009 Oct;156(10):2010–22.10.1016/j.combustflame.2009.06.023Search in Google Scholar

45. Coltrin ME, Kee RJ, Rupley FM, Meeks E. SURFACE CHEMKIN-III: a Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase interface. Report No. SAND96-8217, Technical Report, Sandia National Laboratories, 1996.10.2172/481906Search in Google Scholar

46. Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA, Moffat HK. A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties. Report No. SAND86-8246B, Technical Report, Sandia National Laboratories, 1998.Search in Google Scholar

47. Kuo CH, Ronney PD. Numerical modeling of non-adiabatic heat-recirculating combustors. Proc Combust Inst 2007 Jan;31(2):3277–84.10.1016/j.proci.2006.08.082Search in Google Scholar

48. Chen CH, Ronney PD. Three-dimensional effects in counterflow heat-recirculating combustors. Proc Combust Inst 2011;33(2):3285–91.10.1016/j.proci.2010.06.081Search in Google Scholar

49. Wan J, Fan A, Yao H, Liu W. Flame-anchoring mechanisms of a micro cavity-combustor for premixed H2/air flame. Chem Eng J 2015 Sept 1;275:17–26.10.1016/j.cej.2015.04.011Search in Google Scholar

50. Yang W, Fan A, Wan J, Liu W. Effect of external surface emissivity on flame-splitting limit in a micro cavity-combustor. Appl Therm Eng 2015 May 25;83:8–15.10.1016/j.applthermaleng.2015.03.009Search in Google Scholar

51. Dogwiler U, Mantzaras J, Benz P, Kaeppeli B, Bombach R, Arnold A. Homogeneous ignition of methane-air mixtures over platinum: comparison of measurements and detailed numerical predictions. Symp Int Combust 1998;27(2):2275–82.10.1016/S0082-0784(98)80077-5Search in Google Scholar

52. Reinke M, Mantzaras J, Bombach R, Schenker S, Inauen A. Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar. Combust Flame 2005 Jun;141(4):448–68.10.1016/j.combustflame.2005.01.016Search in Google Scholar

53. Stefanidis GD, Vlachos DG. Millisecond methane steam reforming via process and catalyst intensification. Chem Eng Technol 2008 Aug;31(8):1201–9.10.1002/ceat.200800237Search in Google Scholar

54. Stefanidis GD, Kaisare NS, Maestri M, Vlachos DG. Methane steam reforming at microscales: operation strategies for variable power output at millisecond contact times. AIChE J 2009 Jan;55(1):180–91.10.1002/aic.11672Search in Google Scholar

55. Kaisare NS, Deshmukh SR, Vlachos DG. Stability and performance of catalytic microreactors: simulations of propane catalytic combustion on Pt. Chem Eng Sci 2008 Feb;63(4):1098–116.10.1016/j.ces.2007.11.014Search in Google Scholar

56. Kaisare NS, Vlachos DG. Optimal reactor dimensions for homogeneous combustion in small channels. Catal Today 2007 Jan 30;120(1):96–106.10.1016/j.cattod.2006.07.036Search in Google Scholar

57. Karagiannidis S, Mantzaras J, Boulouchos K. Stability of hetero-/homogeneous combustion in propane- and methane-fueled catalytic microreactors: channel confinement and molecular transport effects. Proc Combust Inst 2011;33(2):3241–9.10.1007/978-3-642-17668-5_7Search in Google Scholar

58. Karagiannidis S, Mantzaras J, Jackson G, Boulouchos K. Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors. Proc Combust Inst 2007 Jan;31(2):3309–17.10.1007/978-3-642-17668-5_6Search in Google Scholar

Received: 2015-11-28
Revised: 2016-5-16
Accepted: 2016-6-9
Published Online: 2016-6-28
Published in Print: 2016-12-1

©2016 by De Gruyter