Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2014

Spans of special cycles of codimension less than 5

  • Martin Raum EMAIL logo


We show that the span of special cycles in the r-th Chow group of a Shimura variety of orthogonal type is finite dimensional, if r<5. As our main tool, we develop the theory of Jacobi forms with rational index MMatN().

Funding statement: The author is supported by the ETH Zurich Postdoctoral Fellowship Program and by the Marie Curie Actions for People COFUND Program.


The author thanks the referee for helpful comments.


[1] A. Andrianov, Modular descent and the Saito–Kurokawa conjecture, Invent. Math. 53 (1979), no. 3, 267–280. 10.1007/BF01389767Search in Google Scholar

[2] R. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. 10.1007/s002220050232Search in Google Scholar

[3] R. Borcherds, The Gross–Kohnen–Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), no. 2, 219–233. 10.1215/S0012-7094-99-09710-7Search in Google Scholar

[4] R. Borcherds, Correction to “The Gross–Kohnen–Zagier theorem in higher dimensions” [Duke Math. J. 97 (1999), no. 2, 219–233], Duke Math. J. 105 (2000), no. 1, 183–184.. 10.1215/S0012-7094-00-10519-4Search in Google Scholar

[5] M. Cheng and J. Duncan, The largest Mathieu group and (mock) automorphic forms, String-Math 2011, Proc. Sympos. Pure Math. 85, American Mathematical Society, Providence (2012), 53–82. 10.1090/pspum/085/1374Search in Google Scholar

[6] W.-L. Chow, On equivalence classes of cycles in an algebraic variety, Ann. of Math. (2) 64 (1956), 450–479. 10.1142/9789812776921_0022Search in Google Scholar

[7] A. Dabholkar and D. Gaiotto, Spectrum of CHL dyons from genus-two partition function, J. High Energy Phys. 2007 (2007), no. 12, Paper No. 87. 10.1088/1126-6708/2007/12/087Search in Google Scholar

[8] A. Dabholkar, S. Murthy and D. Zagier, Quantum black holes, wall crossing, and mock modular forms, preprint (2012), Search in Google Scholar

[9] E. Hecke, Neue Herleitung der Klassenzahlrelationen von Hurwitz und Kronecker, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1926 (1926), 244–249. Search in Google Scholar

[10] F. Hirzebruch and D. B. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113. 10.1007/978-3-642-61711-9_23Search in Google Scholar

[11] S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), no. 1, 39–78. 10.1215/S0012-7094-97-08602-6Search in Google Scholar

[12] H. Maass, Über eine Spezialschar von Modulformen zweiten Grades, Invent. Math. 52 (1979), no. 1, 95–104. 10.1007/BF01389857Search in Google Scholar

[13] H. Maass, Über eine Spezialschar von Modulformen zweiten Grades. II, Invent. Math. 53 (1979), no. 3, 249–253. 10.1007/BF01389765Search in Google Scholar

[14] H. Maass, Über eine Spezialschar von Modulformen zweiten Grades. III, Invent. Math. 53 (1979), no. 3, 255–265. 10.1007/BF01389766Search in Google Scholar

[15] D. Mumford, Tata lectures on theta. III, Progr. Math. 97, Birkhäuser-Verlag, Boston 1991. 10.1007/978-0-8176-4579-3Search in Google Scholar

[16] V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238. Search in Google Scholar

[17] R. Sekiguchi, On projective normality of Abelian varieties. II, J. Math. Soc. Japan 29 (1977), no. 4, 709–727. 10.2969/jmsj/02940709Search in Google Scholar

[18] G. Shimura, On certain reciprocity-laws for theta functions and modular forms, Acta Math. 141 (1978), no. 1–2, 35–71. 10.1007/978-1-4612-2060-2_1Search in Google Scholar

[19] N. Skoruppa, Jacobi forms of critical weight and Weil representations, Modular forms on Schiermonnikoog (Schiermonnikoog 2006), Cambridge University Press, Cambridge (2008), 239–266. 10.1017/CBO9780511543371.013Search in Google Scholar

[20] D. Zagier, Sur la conjecture de Saito-Kurokawa (d’après H. Maass), Théorie des nombres. Séminaire Delange-Pisot-Poitou (Paris 1979–80), Progr. Math. 12, Birkhäuser-Verlag, Boston (1981), 371–394. Search in Google Scholar

[21] W. Zhang, Modularity of generating functions of special cycles on Shimura varieties, Ph.D. thesis, Columbia University, New York 2009. Search in Google Scholar

[22] C. Ziegler, Jacobi forms of higher degree, Abh. Math. Semin. Univ. Hambg. 59 (1989), 191–224. 10.1007/BF02942329Search in Google Scholar

Received: 2013-04-04
Revised: 2013-11-21
Published Online: 2014-06-11
Published in Print: 2016-09-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2023 from
Scroll to top button