Abstract
There are many known examples of scalar-flat
Kähler ALE surfaces, all of which have
group at infinity either cyclic or contained in
This article is dedicated to the memory of Egbert Brieskorn.
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-1405725
Funding statement: The first author was partially supported by NSF Grant DMS-1148490. The second author was partially supported by NSF Grant DMS-1405725.
Acknowledgements
The authors would like to thank Nobuhiro Honda and Claude LeBrun for many enlightening discussions on scalar-flat Kähler metrics. We would also like to thank Claudio Arezzo, David Calderbank, and Michael Singer for many helpful comments. Also, discussions with Akira Fujiki, Ryushi Goto, and Hans-Joachim Hein on deformations of complex structure were very helpful. Finally, thanks are given to the anonymous referees for numerous suggestions to improve the exposition of the paper.
References
[1] A. G. Ache and J. A. Viaclovsky, Obstruction-flat asymptotically locally Euclidean metrics, Geom. Funct. Anal. 22 (2012), no. 4, 832–877. 10.1007/s00039-012-0163-xSearch in Google Scholar
[2] A. G. Ache and J. A. Viaclovsky, Asymptotics of the self-dual deformation complex, J. Geom. Anal. 25 (2015), no. 2, 951–1000. 10.1007/s12220-013-9452-3Search in Google Scholar
[3] T. M. Apostol, Modular functions and Dirichlet series in number theory, 2nd ed., Grad. Texts in Math. 41, Springer, New York 1990. 10.1007/978-1-4612-0999-7Search in Google Scholar
[4] V. Apostolov and Y. Rollin, ALE scalar-flat Kähler metrics on non-compact weighted projective spaces, preprint (2015), http://arxiv.org/abs/1510.02226; to appear in Math. Ann. 10.1007/s00208-016-1423-0Search in Google Scholar
[5] C. Arezzo, R. Lena and L. Mazzieri, On the Kummer construction for Kcsc metrics, preprint (2015), http://arxiv.org/abs/1507.05105. 10.1007/s40574-018-0170-4Search in Google Scholar
[6] C. Arezzo, R. Lena and L. Mazzieri, On the resolution of extremal and constant scalar curvature Kähler orbifolds, Int. Math. Res. Not. IMRN (2015), 10.1093/imrn/rnv346. 10.1093/imrn/rnv346Search in Google Scholar
[7] C. Arezzo and F. Pacard, Blowing up and desingularizing constant scalar curvature Kähler manifolds, Acta Math. 196 (2006), no. 2, 179–228. 10.1007/s11511-006-0004-6Search in Google Scholar
[8] C. Arezzo and F. Pacard, Blowing up Kähler manifolds with constant scalar curvature. II, Ann. of Math. (2) 170 (2009), no. 2, 685–738. 10.4007/annals.2009.170.685Search in Google Scholar
[9] C. Arezzo, F. Pacard and M. Singer, Extremal metrics on blowups, Duke Math. J. 157 (2011), no. 1, 1–51. 10.1215/00127094-2011-001Search in Google Scholar
[10] S. Bando, A. Kasue and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), no. 2, 313–349. 10.1007/BF01389045Search in Google Scholar
[11] K. Behnke and H. Knörrer, On infinitesimal deformations of rational surface singularities, Compos. Math. 61 (1987), no. 1, 103–127. Search in Google Scholar
[12] K. Behnke and O. Riemenschneider, Quotient surface singularities and their deformations, Singularity theory (Trieste 1991), World Scientific, Singapore (1995), 1–54. Search in Google Scholar
[13] O. Biquard and Y. Rollin, Smoothing singular extremal Kähler surfaces and minimal Lagrangians, Adv. Math. 285 (2015), 980–1024. 10.1016/j.aim.2015.08.013Search in Google Scholar
[14] C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), no. 3, 517–526. 10.1007/BF01457232Search in Google Scholar
[15] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336–358. 10.1007/BF01425318Search in Google Scholar
[16] R. L. Bryant, Bochner–Kähler metrics, J. Amer. Math. Soc. 14 (2001), no. 3, 623–715. 10.1090/S0894-0347-01-00366-6Search in Google Scholar
[17] D. Burns, Twistors and harmonic maps, talk in Charlotte, 1986. Search in Google Scholar
[18] E. Calabi, Extremal Kähler metrics, Seminar on differential geometry, Ann. of Math. Stud. 102, Princeton University Press, Princeton (1982), 259–290. 10.1515/9781400881918-016Search in Google Scholar
[19] E. Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin (1985), 95–114. 10.1007/978-3-642-69828-6_8Search in Google Scholar
[20] D. M. J. Calderbank and M. A. Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004), no. 2, 405–443. 10.1007/s00222-003-0344-1Search in Google Scholar
[21] J. Cheeger and G. Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118 (1994), no. 3, 493–571. 10.1007/BF01231543Search in Google Scholar
[22] X. Chen, C. Lebrun and B. Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), no. 4, 1137–1168. 10.1090/S0894-0347-08-00594-8Search in Google Scholar
[23] R. J. Conlon and H.-J. Hein, Asymptotically conical Calabi–Yau manifolds, III, preprint (2014), http://arxiv.org/abs/1405.7140. Search in Google Scholar
[24] H. S. M. Coxeter, The binary polyhedral groups, and other generalizations of the quaternion group, Duke Math. J. 7 (1940), 367–379. 10.1215/S0012-7094-40-00722-0Search in Google Scholar
[25] H. S. M. Coxeter, Regular complex polytopes, 2nd ed., Cambridge University Press, Cambridge 1991. Search in Google Scholar
[26] D. W. Crowe, The groups of regular complex polygons, Canad. J. Math. 13 (1961), 149–156. 10.4153/CJM-1961-011-4Search in Google Scholar
[27]
M. G. Dabkowski and M. T. Lock,
On Kähler conformal compactifications of
[28] L. David and P. Gauduchon, The Bochner-flat geometry of weighted projective spaces, Perspectives in Riemannian geometry, CRM Proc. Lecture Notes 40, American Mathematical Society, Providence (2006), 109–156. 10.1090/crmp/040/06Search in Google Scholar
[29] A. Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compos. Math. 49 (1983), no. 3, 405–433. Search in Google Scholar
[30] S. Donaldson and R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), no. 2, 197–239. 10.1088/0951-7715/2/2/002Search in Google Scholar
[31] P. Du Val, Homographies, quaternions and rotations, Oxford Math. Monogr., Clarendon Press, Oxford 1964. Search in Google Scholar
[32] T. Eguchi and A. J. Hanson, Self-dual solutions to Euclidean gravity, Ann. Physics 120 (1979), no. 1, 82–106. 10.1016/0003-4916(79)90282-3Search in Google Scholar
[33]
E. Falbel and J. Paupert,
Fundamental domains for finite subgroups in
[34]
A. Floer,
Self-dual conformal structures on
[35] P. Gauduchon, Hirzebruch surfaces and weighted projective planes, Riemannian topology and geometric structures on manifolds, Progr. Math. 271, Birkhäuser, Boston (2009), 25–48. 10.1007/978-0-8176-4743-8_2Search in Google Scholar
[36] G. W. Gibbons and S. W. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978), no. 4, 430–432. 10.1142/9789814539395_0031Search in Google Scholar
[37] S. W. Hawking and C. N. Pope, Symmetry breaking by instantons in supergravity, Nuclear Phys. B 146 (1978), no. 2, 381–392. 10.1016/0550-3213(78)90073-1Search in Google Scholar
[38] F. Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1–22. 10.1007/BF01343146Search in Google Scholar
[39] N. Honda, Deformation of LeBrun’s ALE metrics with negative mass, Comm. Math. Phys. 322 (2013), no. 1, 127–148. 10.1007/s00220-012-1656-zSearch in Google Scholar
[40]
N. Honda,
Scalar flat Kähler metrics on affine bundles over
[41] D. Joyce, The hypercomplex quotient and the quaternionic quotient, Math. Ann. 290 (1991), no. 2, 323–340. 10.1007/BF01459248Search in Google Scholar
[42] D. Joyce, Explicit construction of self-dual 4-manifolds, Duke Math. J. 77 (1995), no. 3, 519–552. 10.1215/S0012-7094-95-07716-3Search in Google Scholar
[43] Y. Kawamata, On deformations of compactifiable complex manifolds, Math. Ann. 235 (1978), no. 3, 247–265. 10.1007/BF01420124Search in Google Scholar
[44] A. Kovalev and M. Singer, Gluing theorems for complete anti-self-dual spaces, Geom. Funct. Anal. 11 (2001), no. 6, 1229–1281. 10.1007/s00039-001-8230-8Search in Google Scholar
[45] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989), no. 3, 685–697. 10.4310/jdg/1214443067Search in Google Scholar
[46] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683. 10.1142/9789814539395_0034Search in Google Scholar
[47] T. Y. Lam, Hamilton’s quaternions, Handbook of algebra, Vol. 3, Elsevier, Amsterdam (2003), 429–454. 10.1016/S1570-7954(03)80068-2Search in Google Scholar
[48] H. B. Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131–164. 10.1007/BF01350842Search in Google Scholar
[49] C. LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), no. 4, 591–596. 10.1007/BF01221110Search in Google Scholar
[50] C. LeBrun and B. Maskit, On optimal 4-dimensional metrics, J. Geom. Anal. 18 (2008), no. 2, 537–564. 10.1007/s12220-008-9019-xSearch in Google Scholar
[51] C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), no. 3, 298–336. 10.1007/BF01896244Search in Google Scholar
[52] C. LeBrun and M. Singer, A Kummer-type construction of self-dual 4-manifolds, Math. Ann. 300 (1994), no. 1, 165–180. 10.1007/BF01450482Search in Google Scholar
[53] C. Li, On sharp rates and analytic compactifications of asymptotically conical Kähler metrics, preprint (2014), http://arxiv.org/abs/1405.2433. 10.1215/00127094-2019-0073Search in Google Scholar
[54] D. McCullough, Isometries of elliptic 3-manifolds, J. Lond. Math. Soc. (2) 65 (2002), no. 1, 167–182. 10.1112/S0024610701002782Search in Google Scholar
[55] J. McKay, Graphs, singularities, and finite groups, Finite groups (Santa Cruz 1979), Proc. Sympos. Pure Math. 37, American Mathematical Society, Providence (1980), 183–186. 10.1090/pspum/037/604577Search in Google Scholar
[56] H. Nakajima, Self-duality of ALE Ricci-flat 4-manifolds and positive mass theorem, Recent topics in differential and analytic geometry, Academic Press, Boston (1990), 385–396. 10.1016/B978-0-12-001018-9.50018-XSearch in Google Scholar
[57] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531–559. 10.1090/S0002-9947-1970-0268911-3Search in Google Scholar
[58] R. Răsdeaconu and I. Şuvaina, ALE Ricci-flat Kähler surfaces and weighted projective spaces, Ann. Global Anal. Geom. 47 (2015), no. 2, 117–134. 10.1007/s10455-014-9438-9Search in Google Scholar
[59] Y. Rollin and M. Singer, Non-minimal scalar-flat Kähler surfaces and parabolic stability, Invent. Math. 162 (2005), no. 2, 235–270. 10.1007/s00222-004-0436-6Search in Google Scholar
[60] P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), no. 5, 401–487. 10.1112/blms/15.5.401Search in Google Scholar
[61] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238. 10.1007/BF02398271Search in Google Scholar
[62] Y.-T. Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional noncompact complex manifolds, Pacific J. Math. 28 (1969), 407–411. 10.2140/pjm.1969.28.407Search in Google Scholar
[63] R. Stekolshchik, Notes on Coxeter transformations and the McKay correspondence, Springer Monogr. Math., Springer, Berlin 2008. Search in Google Scholar
[64] J. Streets, Asymptotic curvature decay and removal of singularities of Bach-flat metrics, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1301–1324. 10.1090/S0002-9947-09-04960-5Search in Google Scholar
[65] G. Székelyhidi, On blowing up extremal Kähler manifolds, Duke Math. J. 161 (2012), no. 8, 1411–1453. 10.1215/00127094-1593308Search in Google Scholar
[66] G. Székelyhidi, Blowing up extremal Kähler manifolds II, Invent. Math. 200 (2015), no. 3, 925–977. 10.1007/s00222-014-0543-ySearch in Google Scholar
[67] W. Threlfall and H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes, Math. Ann. 104 (1931), no. 1, 1–70. 10.1007/BF01457920Search in Google Scholar
[68] W. Threlfall and H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluß), Math. Ann. 107 (1933), no. 1, 543–586. 10.1007/BF01448910Search in Google Scholar
[69] G. Tian and J. Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005), no. 2, 346–372. 10.1016/j.aim.2004.09.004Search in Google Scholar
[70] J. Viaclovsky, Monopole metrics and the orbifold Yamabe problem, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 7, 2503–2543. 10.5802/aif.2617Search in Google Scholar
[71] J. M. Wahl, Vanishing theorems for resolutions of surface singularities, Invent. Math. 31 (1975), no. 1, 17–41. 10.1007/BF01389864Search in Google Scholar
[72] D. Wright, Compact anti-self-dual orbifolds with torus actions, Selecta Math. (N.S.) 17 (2011), no. 2, 223–280. 10.1007/s00029-010-0043-xSearch in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston