Abstract
For a Dirichlet series symbol
We show that
Funding statement: The first and third author are supported by Grant 227768 of the Research Council of Norway.
Acknowledgements
The authors are grateful to Alexandru Aleman and Frédéric Bayart for helpful discussions and remarks. They would also like to express their gratitude to the anonymous referee for a very careful review of the paper.
References
[1] A. B. Aleksandrov and V. V. Peller, Hankel operators and similarity to a contraction, 2nd ed. 1996 (1996), no. 6, 263–275. Search in Google Scholar
[2]
A. Aleman and J. A. Cima,
An integral operator on
[3] A. Aleman and K.-M. Perfekt, Hankel forms and embedding theorems in weighted Dirichlet spaces, Int. Math. Res. Not. IMRN 2012 (2012), no. 19, 4435–4448. 10.1093/imrn/rnr195Search in Google Scholar
[4]
A. Aleman and A. G. Siskakis,
An integral operator on
[5] R. Balasubramanian, B. Calado and H. Queffélec, The Bohr inequality for ordinary Dirichlet series, Studia Math. 175 (2006), no. 3, 285–304. 10.4064/sm175-3-7Search in Google Scholar
[6] F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), no. 3, 203–236. 10.1007/s00605-002-0470-7Search in Google Scholar
[7] F. Bayart, Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math. 47 (2003), no. 3, 725–743. 10.1215/ijm/1258138190Search in Google Scholar
[8]
F. Bayart, H. Queffélec and K. Seip,
Approximation numbers of composition operators on
[9] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), no. 3, 600–622. 10.2307/1968255Search in Google Scholar
[10] H. Bohr, Über die gleichmäßige Konvergenz Dirichletscher Reihen, J. reine angew. Math. 143 (1913), 203–211. 10.1515/crll.1913.143.203Search in Google Scholar
[11] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. (2) 13 (1914), no. 1, 1–5. 10.1112/plms/s2-13.1.1Search in Google Scholar
[12] A. Bondarenko, W. Heap and K. Seip, An inequality of Hardy–Littlewood type for Dirichlet polynomials, J. Number Theory 150 (2015), 191–205. 10.1016/j.jnt.2014.11.015Search in Google Scholar
[13] R. de la Bretèche, Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), no. 2, 141–148. 10.4064/aa134-2-5Search in Google Scholar
[14] O. F. Brevig and K.-M. Perfekt, Weak product spaces of Dirichlet series, Integral Equations Operator Theory 86 (2016), no. 4, 453–473. 10.1007/s00020-016-2320-3Search in Google Scholar
[15] O. F. Brevig, K.-M. Perfekt, K. Seip, A. G. Siskakis and D. Vukotić, The multiplicative Hilbert matrix, Adv. Math. 302 (2016), 410–432. 10.1016/j.aim.2016.07.019Search in Google Scholar
[16] S.-Y. A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3, 613–620. 10.2307/1971229Search in Google Scholar
[17] A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes and K. Seip, The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), no. 1, 485–497. 10.4007/annals.2011.174.1.13Search in Google Scholar
[18] S. H. Ferguson and M. T. Lacey, A characterization of product BMO by commutators, Acta Math. 189 (2002), no. 2, 143–160. 10.1007/BF02392840Search in Google Scholar
[19] I. S. Gál, A theorem concerning Diophantine approximations, Nieuw Arch. Wiskunde (2) 23 (1949), 13–38. Search in Google Scholar
[20] J. B. Garnett, Bounded analytic functions, Grad. Texts in Math. 236, Springer, New York 2007. Search in Google Scholar
[21] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh–Paley series, Studia Math. 49 (1973/74), 107–124. 10.4064/sm-49-2-107-124Search in Google Scholar
[22]
H. Hedenmalm, P. Lindqvist and K. Seip,
A Hilbert space of Dirichlet series and systems of dilated functions in
[23] H. Helson, Hankel forms and sums of random variables, Studia Math. 176 (2006), no. 1, 85–92. 10.4064/sm176-1-6Search in Google Scholar
[24] T. Hilberdink, An arithmetical mapping and applications to Ω-results for the Riemann zeta function, Acta Arith. 139 (2009), no. 4, 341–367. 10.4064/aa139-4-3Search in Google Scholar
[25] M. T. Lacey and E. Terwilleger, Hankel operators in several complex variables and product BMO, Houston J. Math. 35 (2009), no. 1, 159–183. Search in Google Scholar
[26]
J. Marzo and K. Seip,
[27] B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), no. 5, 676–692. 10.1007/s00041-009-9112-ySearch in Google Scholar
[28] J.-F. Olsen, Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 261 (2011), no. 9, 2669–2696. 10.1016/j.jfa.2011.07.007Search in Google Scholar
[29] J.-F. Olsen and E. Saksman, On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame bound estimate, J. reine angew. Math. 663 (2012), 33–66. 10.1515/CRELLE.2011.093Search in Google Scholar
[30] J. Ortega-Cerdà and K. Seip, A lower bound in Nehari’s theorem on the polydisc, J. Anal. Math. 118 (2012), no. 1, 339–342. 10.1007/s11854-012-0038-ySearch in Google Scholar
[31]
J. Pau,
Integration operators between Hardy spaces on the unit ball of
[32] C. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591–602. 10.1007/BF02567392Search in Google Scholar
[33] H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, HRI Lect. Notes 2, Hindustan Book Agency, New Delhi 2013. 10.1007/978-93-86279-61-3Search in Google Scholar
[34] E. Saksman and K. Seip, Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc. 41 (2009), no. 3, 411–422. 10.1112/blms/bdp004Search in Google Scholar
[35] K. Seip, Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z. 274 (2013), no. 3–4, 1327–1339. 10.1007/s00209-012-1118-5Search in Google Scholar
[36] D. Vukotić, The isoperimetric inequality and a theorem of Hardy and Littlewood, Amer. Math. Monthly 110 (2003), no. 6, 532–536. 10.1080/00029890.2003.11919991Search in Google Scholar
[37] K. Zhu, Operator theory in function spaces, 2nd ed., Math. Surveys Monogr. 138, American Mathematical Society, Providence 2007. 10.1090/surv/138Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston