DEMONSTRATIO MATHEMATICA Vol. XL No 4 2007

V. Cheng, S. L. Wismath

BASES FOR THE *k*-NORMALIZATIONS OF VARIETIES OF BANDS

Abstract. The usual depth measurement on terms of a fixed type type τ assigns to each term a non-negative integer called its depth. For $k \geq 1$, an identity $s \approx t$ of type τ is said to be k-normal (with respect to the depth measurement) if either s = t or both s and t have depth $\geq k$. Taking k = 1 gives the well-known property of normality of identities. A variety is called k-normal (with respect to the depth measurement) if all its identities are k-normal. For any variety V, there is a least k-normal variety $N_k(V)$ containing V, the variety determined by the set of all k-normal identities of V. In this paper we produce for every subvariety V of the variety B of bands (idempotent semigroups) a finite equational basis for $N_k(V)$, for $k \geq 1$.

1. Introduction

Let $\tau = (n_i)_{i \in I}$ be any type of algebras, with an operation symbol f_i of arity n_i for each $i \in I$. Let $X = \{x_1, x_2, x_3, \ldots\}$ be a set of variable symbols, and let $W_{\tau}(X)$ be the set of all terms of type τ formed using variables from X. We will use the well-known Galois connection Id - Mod between classes of algebras and sets of identities. For any class K of algebras of type τ and any set Σ of identities of type τ , we have

 $Mod \Sigma = \{ algebras \mathcal{A} \text{ of type } \tau \mid \mathcal{A} \text{ satisfies all identities in } \Sigma \},\$

 and

 $Id K = \{ \text{identities } s \approx t \text{ of type } \tau \mid \text{ all algebras in } K \text{ satisfy } s \approx t \}.$

For each $t \in W_{\tau}(X)$, we denote by v(t) the depth of t, a parameter which is defined inductively by

¹⁹⁹¹ Mathematics Subject Classification: 08B05, 20M07.

Key words and phrases: k-normal identities, bands, k-normalized bands, finite equational basis.

Research supported by NSERC of Canada.

(i) v(t) = 0, if t is a variable;

(ii) $v(t) = 1 + max\{v(t_j) : 1 \le j \le n_i\}$, if t is a composite term $t = f_i(t_1, \ldots, t_{n_i})$, for some $i \in I$ and some terms t_1, \ldots, t_{n_i} .

When a term is portrayed by a tree diagram, with the nodes corresponding to operation symbols in the term and the leaves to variable symbols, the depth of the term t corresponds to the length of the longest path from root to leaves in the tree diagram for t. The depth parameter defines a valuation function v on the set of all terms of type τ (see [3]).

Let $k \geq 0$ be any natural number. An identity $s \approx t$ of type τ is called k-normal (with respect to the depth valuation) if either s = t or v(t), $v(s) \geq k$. We denote by $N_k(\tau)$ the set of all k-normal identities of type τ . It was proved in [3] that k-normality with respect to the depth of terms is a hereditary property of identities, meaning that the set $N_k(\tau)$ is closed under the usual five rules of deduction for identities. This is equivalent to the fact that $N_k(\tau)$ is an equational theory. For a variety V of type τ , we consider the set $Id_k V = N_k(\tau) \cap IdV$ of all k-normal identities satisfied by V. This is an equational theory, and the variety it determines, $N_k(V) = Mod Id_k V$, is called the k-normalization of V. It can happen that $N_k(V) = V$, when every identity satisfied by V is k-normal, and in this case we say that V is a k-normal variety. Otherwise V is a proper subvariety of $N_k(V)$, and $N_k(V)$ is the least k-normal variety to contain V. The case k = 1 gives the usual definitions of a normal identity or variety and the normalization of V; see for instance [7].

The variety $N_k(V)$ is defined equationally, by means of the k-normal identities of V. An algebraic characterization of the algebras in $N_k(V)$ was given by Denecke and Wismath in [2], using the concept of a k-choice algebra. They showed that any algebra in $N_k(V)$ is a homomorphic image of a k-choice algebra constructed from an algebra in V.

In this paper we return to the equational approach, to examine the question of when the variety $N_k(V)$ will have a finite basis. We consider the subvarieties of the type (2) variety B of bands (idempotent semigroups), and produce for each such subvariety V a finite equational basis for $N_k(V)$, for $k \ge 1$. Section 2 provides the necessary background: a description of the countably infinite collection of varieties of bands, and a summary of the finite basis (from [8]) for the variety $N_k(Sem)$, for $k \ge 1$, where Sem is the variety of all semigroups. We will refer to the identities in this basis as the *k*-normal associative identities. In Section 3, we add two additional *k*-normal idempotent identities to this basis, to produce a basis for $N_k(B)$. Finally in Section 4 we show that for any proper subvariety V of B, there is a finite equational basis for $N_k(V)$ consisting of the basis for $N_k(B)$ plus one additional *k*-normal identity (determined by V).

2. Background information

In this section we present some background information about the variety Sem of all semigroups and the variety B of bands and its subvarieties. All of these varieties are of type (2), and we shall follow the convention of using juxtaposition instead of the binary operation symbol f. Thus Sem $= Mod\{x(yz) \approx (xy)z\}$, the model class determined by the associative law, and $B = Mod\{x(yz) \approx (xy)z, x^2 \approx x\}$, the variety of idempotent semigroups or bands.

It is known that B has a countably infinite number of subvarieties, and the lattice they form has been completely described by Birjukov ([1]), Fennemore ([4]), Gerhard ([5]) and Gerhard and Petrich ([6]). For our purposes, the most significant feature of these varieties is that each proper subvariety of B is equationally defined by associativity, idempotence, and one additional identity.

We now describe the equational bases for the varieties $N_k(Sem)$, for $k \ge 1$, as produced in [8]. First, we observe that the associativity identity is actually k-normal for k = 1, 2. Thus for these k-values we have $N_k(Sem) = Sem$, and the set consisting of the associative identity is a basis. So we need a basis only for the case that $k \ge 3$.

DEFINITION 2.1. Let $k \ge 1$. A type (2) term will be called a *skeleton* term (of depth k) if it contains exactly k occurrences of f and exactly one occurrence of each of the variables x_1, \ldots, x_{k+1} , in that order from left to right in the term, and no other variables.

For k = 1, there is only one skeleton term, the term $f(x_1, x_2)$. The skeleton terms for k = 3 are given in Figure 1. In general, there are 2^{k-1} skeleton terms for $k \ge 2$.

Figure 1

DEFINITION 2.2. A staircase term is any term of the form

 $f(f(\ldots(f(x_{i_1}, x_{i_2}), x_{i_3}), \ldots), x_{i_k})$

for some variables x_{i_1}, \ldots, x_{i_p} . For any $k \ge 1$, we shall refer to the term $stair = stair(x_1, \ldots, x_{k+1}) = f(f(\ldots(f(x_1, x_2), x_3), \ldots), x_{k+1}))$, shown in

Figure 2 below, as the *staircase term* of depth k. This is one of the skeleton terms of depth k.

Figure 2

THEOREM 2.3 ([8]). Let $k \geq 3$. The set

 $\Sigma_{N_k(Sem)} = \{ stair \approx w \mid w \text{ any depth } k \text{ non-stair skeleton term} \}$

forms a finite equational basis for the variety $N_k(Sem)$.

We shall refer to the identities in the basis $\Sigma_{N_k(Sem)}$ as the *k*-normal associativity identities.

3. An equational basis for $N_k(B)$

The variety B of all bands is equationally defined by the two identities of associativity and idempotence. As noted above, associativity is k-normal for k = 1, 2 but not k-normal for $k \ge 3$. The idempotent identity $x \approx$ f(x, x) is not k-normal for any $k \ge 1$. That means that $N_k(B)$ no longer satisfies idempotence for $k \ge 1$, although it does still satisfy any k-normal consequences of idempotence. We shall consider first the case that $k \ge 3$, leaving till later the simpler cases of k = 1, 2.

THEOREM 3.1. Let $k \geq 3$. A finite equational basis for the variety $N_k(B)$ is given by the set $\sum_{N_k(B)}$ of the following identities:

k-Normal Associativity

(1) $stair(x_1,\ldots,x_{k+1}) \approx w(x_1,\ldots,x_{k+1})$

for all non-staircase skeleton terms w.

k-Normal Idempotence

(2a) $(\cdots (x_1 x_2) x_3) \cdots) x_{k+1} \approx (\cdots (x_1 x_1) x_2) x_3) \cdots) x_{k+1}$

(2b) $(\cdots (x_1x_2)x_3)\cdots)x_{k+1}\approx (\cdots (x_1x_2)x_3)\cdots)x_{k+1})x_{k+1}.$

Note that all of the identities in $\Sigma_{N_k(B)}$ are k-normal consequences of associativity or idempotence, and hence hold in $N_k(B)$. To prove Theorem 3.1, we will show that we can produce a deduction of any k-normal band identity $s \approx t$ from the set $\Sigma_{N_k(B)}$ using the five rules of deduction. Our proof will use the (k+1)-variable staircase term $stair = stair(x_1, x_2, \ldots, x_{k+1})$ from Section 2. Our strategy will be to deduce the three identities $s \approx stair(s, \ldots, s)$, $stair(s, \ldots, s) \approx stair(t, \ldots, t)$, and $stair(t, \ldots, t) \approx t$ from $\Sigma_{N_k(B)}$, allowing us to conclude $s \approx t$. We start by deducing four identities from $\Sigma_{N_k(B)}$ that we will use in subsequent proofs.

LEMMA 3.2. The following identities are consequences of the identities in $\Sigma_{N_k(B)}$:

(1*)
$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1} \approx (\cdots(x_1x_1)x_1)\cdots)x_1)x_2)x_3)\cdots)x_{k+1},$$

with k or $k+1$ occurrences of x_1 on the right side of the equation.

(2*)
$$(\cdots (x_1 x_2) x_3) \cdots) x_{k+1} \approx (\cdots (x_1 x_2) x_3) \cdots) x_{k+1}) \cdots) x_{k+1},$$

with k or k+1 occurrences of x_{k+1} on the right side of the equation.

$$(3^*) \quad (\cdots (x_1 x_2) x_3) \cdots) x_{k+2} \approx (\cdots (x_1 x_2) x_3) \cdots) x_k) (x_{k+1} x_{k+2}).$$

$$(4^*) \quad (\cdots (x_1 x_2) x_3) \cdots) x_k) (x_{k+1} x_{k+2})$$

$$\approx (\cdots (x_1 x_2) x_3) \cdots) x_k) (x_{k+1} x_{k+2}) x_{k+2}.$$

Proof. To deduce (1^*) , we first apply the substitution deduction rule on identity (2a) from our basis, to replace variable x_j by x_{j-1} for $2 \le j \le k+1$. This gives us $(\cdots(x_1x_1)x_2)\cdots)x_k \approx (\cdots(x_1x_1)x_1)x_2)\cdots)x_k$. Then we use the compatibility deduction rule on this identity and $x_{k+1} \approx x_{k+1}$ to obtain $(\cdots(x_1x_1)x_2)\cdots)x_{k+1} \approx (\cdots(x_1x_1)x_1)x_2)\cdots)x_{k+1}$. By transitivity then we get $(\cdots(x_1x_2)x_3)\cdots)x_{k+1} \approx (\cdots(x_1x_1)x_1)x_2)\cdots)x_{k+1}$. Next we use the substitution rule on identity (2a) again, this time replacing x_2 with x_1 and x_j with x_{j-2} for $3 \le j \le k+1$. This gives $(\cdots(x_1x_1)x_1)x_2)\cdots)x_{k-1} \approx$ $(\cdots(x_1x_1)x_1)x_1)x_2)\cdots)x_{k-1}$. Multiplying this identity on the right by x_k and then again on the right by x_{k+1} (by the compatibility deduction rule) gives us $(\cdots(x_1x_1)x_1)x_2)\cdots)x_{k+1} \approx (\cdots(x_1x_1)x_1)x_2)\cdots)x_{k+1}$. We apply transitivity again to obtain

$$(\cdots (x_1x_2)x_3)\cdots)x_{k+1} \approx (\cdots (x_1x_1)x_1)x_1)x_2)\cdots)x_{k+1}.$$

With repeated applications of substitution, compatibility and transitivity we obtain (1^*) .

The deduction of (2^*) is similar. We first use compatibility on identity (2b) and $x_{k+1} \approx x_{k+1}$ to obtain

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}x_{k+1}\approx(\cdots(x_1x_2)x_3)\cdots)x_{k+1}x_{k+1}x_{k+1}$$

Transitivity then gives

 $(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_1x_2)x_3)\cdots)x_{k+1})x_{k+1}x_{k+1}$

Then we alternate using compatibility on $x_{k+1} \approx x_{k+1}$ and the previous step in our deduction with transitivity on (2b) and the previous step in the deduction to obtain (2^{*}).

For (3^*) , we start with the identity

 $(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_1(x_2x_3))x_4)\cdots)x_{k+1},$

which is one of the k-normal associativity consequences from the set $\Sigma_{N_k(B)}$. Using the compatibility rule we can multiply both sides of the identity on the right by x_{k+2} to get

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}x_{k+2}\approx(\cdots(x_1(x_2x_3))x_4)\cdots)x_{k+1}x_{k+2}$$

Next we apply the substitution rule to the $\Sigma_{N_k(B)}$ identity

$$(\cdots (x_1 x_2) x_3) \cdots) x_{k+1} \approx x_1 [(\cdots (x_2 x_3) x_4) \cdots) x_{k+1}]$$

to replace the variable x_j with x_{j+1} , for $3 \le j \le k+1$, and the variable x_2 with x_2x_3 ; this results in

$$(\cdots (x_1(x_2x_3))x_4)\cdots)x_{k+2} \approx x_1[(\cdots (x_2x_3)x_4)\cdots)x_{k+2}]$$

From transitivity we obtain the identity

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}x_{k+2}\approx x_1[(\cdots(x_2x_3)x_4)\cdots)x_{k+2}],$$

which we shall denote by (1^+) .

Now we replace x_j with x_{j+1} , for $1 \leq j \leq k+1$, in the $\Sigma_{N_k(B)}$ identity $(\cdots(x_1x_2)x_3)\cdots)x_{k+1} \approx x_1(x_2(\cdots(x_{k-1}(x_kx_{k+1})\cdots)))$. Applying the compatibility rule on the resulting identity and the identity $x_1 \approx x_1$ gives $x_1[(\cdots(x_2x_3)x_4)\cdots)x_{k+2}] \approx x_1(x_2(\cdots(x_k(x_{k+1}x_{k+2})\cdots)))$, which we denote by (2^+) .

Finally, we use $x_1(x_2(\cdots(x_{k-1}(x_kx_{k+1})\cdots) \approx (\cdots(x_1x_2)x_3)\cdots)x_{k+1})$ and replace x_{k+1} with $x_{k+1}x_{k+2}$. This gives the following identity (3⁺):

$$x_1(x_2(\cdots(x_{k-1}(x_k(x_{k+1}x_{k+2})\cdots)\approx(\cdots(x_1x_2)x_3)\cdots)(x_{k+1}x_{k+2}))$$

Our identity (3^*) then follows from (1^+) , (2^+) , and (3^+) .

To deduce (4^*) , we apply the substitution rule on identity (2b), replacing x_j with x_{j+1} for $2 \le j \le k+1$, and x_1 with x_1x_2 . This leads to

(1^{*})
$$(\cdots (x_1 x_2) x_3) \cdots) x_{k+2} \approx (\cdots (x_1 x_2) x_3) \cdots) x_{k+2} x_{k+2}.$$

We then apply the compatibility rule on identity (3^*) from above and $x_{k+2} \approx x_{k+2}$ to obtain

$$\begin{array}{ll} (2^{\diamond}) & (\cdots (x_1 x_2) x_3) \cdots) x_{k+1}) x_{k+2}) x_{k+2} \\ & \approx (\cdots (x_1 x_2) x_3) \cdots) (x_{k+1} x_{k+2})) x_{k+2}. \end{array}$$

From $(\cdots(x_1x_2)x_3)\cdots)x_k(x_{k+1}x_{k+2}) \approx (\cdots(x_1x_2)x_3)\cdots)x_{k+2}$, (1[°]) and (2[°]) we obtain (4^{*}).

LEMMA 3.3. For any term u of depth $\geq k$, the identity $u \approx stair(u, \ldots, u)$ can be deduced from $\Sigma_{N_k(B)}$.

 ${\tt Proof.}$ We first note that it is straightforward to deduce from $\Sigma_{N_k(B)}$ the identity

```
stair(x_1,\ldots,x_{k+1}) \approx stair(stair(x_1,\ldots,x_{k+1}),\ldots,stair(x_1,\ldots,x_{k+1})),
```

using the identities (2^*) , (1^*) and (3^*) from the previous proof and identity (2b).

Now let u be any term of depth $\geq k$. The depth restriction means that we can write $u = w(u_1, \ldots, u_{k+1})$, for some skeleton term w and some terms u_1, \ldots, u_{k+1} . Thus we have

```
u = w(u_1, \ldots, u_{k+1})
```

 $\approx stair(u_1, \dots, u_{k+1}) \qquad \text{from the } k\text{-associative identities}$ $\approx stair(stair(u_k, \dots, u_{k+1})) \qquad \text{stair}(u_k, \dots, u_{k+1})) \qquad \text{from all}$

 $\approx stair(stair(u_1, \dots, u_{k+1}), \dots, stair(u_1, \dots, u_{k+1})) \quad \text{from above} \\ \approx stair(u, \dots, u) \quad \text{since } w \approx stair.$

Therefore, $u \approx stair(u, \dots, u)$ can be deduced from the available identities.

We have shown so far that for any k-normal band identity $s \approx t$, we can deduce $s \approx stair(s, \ldots, s)$ and $stair(t, \ldots, t) \approx t$ from $\Sigma_{N_k(B)}$. All that remains for our proof is to show that $stair(s, \ldots, s) \approx stair(t, \ldots, t)$ can also be deduced from $\Sigma_{N_k(B)}$.

Since $s \approx t$ holds in B there is a deduction of it, using the five rules of deduction, from the usual basis $\Sigma_B = \{x(yz) \approx (xy)z, x^2 \approx x\}$ for the variety of bands. We shall refer to this deduction as the given deduction. Now, we produce a new list of identities called the derived list by replacing each step $u_j \approx w_j$ in the given deduction by $stair(u_j, \ldots, u_j) \approx stair(w_j, \ldots, w_j)$. We want to show that the derived list is a deduction of $stair(s, \ldots, s) \approx stair(t, \ldots, t)$ from $\Sigma_{N_k(B)}$ and some of its consequences. In particular, we want to be able to use in addition to $\Sigma_{N_k(B)}$ the identities in $stair(\Sigma_B) = \{stair(p, \ldots, p) \approx stair(q, \ldots, q) \mid p \approx q \in \Sigma_B\}$.

LEMMA 3.4. The identities in the set stair (Σ_B) can be deduced from $\Sigma_{N_k(B)}$.

Proof. We need to consider the "staired" version of the two basis identities associativity and idempotence. First, $stair(x_1(x_2x_3),\ldots,x_1(x_2x_3)) \approx stair((x_1x_2)x_3,\ldots,(x_1x_2)x_3)$ can be deduced from $\Sigma_{N_k(B)}$ in a straightforward deduction using the identities

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_1(x_2x_3))x_4)x_5)\cdots)x_{k+1},$$

 (1^*) and (2^*) ,

$$x_1(x_2(\cdots(x_{k_1}(x_k)x_{k+1}))\cdots) \approx x_1(x_2(\cdots(x_{k_1}(x_kx_{k+1})\cdots))$$

 and

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx x_1(x_2(\cdots(x_{k_1}(x_kx_{k+1})\cdots)))x_{k+1}\approx x_1(x_2(\cdots(x_{k_1}(x_kx_{k+1})\cdots)))x_{k+1})x_{k+1}\approx x_1(x_2(\cdots(x_{k_1}(x_kx_{k+1})\cdots)))x_{k+1}$$

The deduction of $stair(x_1x_1, \ldots, x_1x_1) \approx stair(x_1, \ldots, x_1)$ for idempotence is similarly straightforward, using the identities (2a), (1^*) , (2^*) and (4^*) .

Now it suffices to show that the identity $stair(s, \ldots, s) \approx stair(t, \ldots, t)$ can be deduced from $\sum_{N_k(B)} \bigcup stair(\sum_B)$. To prove this, we will show that each step j in the derived list can be justified, by the same justification used for step j in the given deduction. We will use the following two lemmas to handle two of the cases.

LEMMA 3.5. For any terms u, w, p and q, the identity

$$stair((uw),\ldots,(uw)) pprox stair((pq),\ldots,(pq))$$

can be deduced from the identity

 $stair(u, \ldots, u)stair(w, \ldots, w) \approx stair(p, \ldots, p)stair(q, \ldots, q)$

and the identities in $\Sigma_{N_k(B)}$.

Proof. First we note that the two identities

$$stair((uw),\ldots,(uw)) pprox stair(u,\ldots,u) stair(w,\ldots,w)$$

and

$$stair(p, \ldots, p)stair(q, \ldots, q) \approx stair((pq), \ldots, (pq))$$

can be deduced from the identities

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx x_1[(\cdots(x_2x_3)x_4)\cdots)x_{k+1}],$$

 $(1^*),$

$$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_1(x_2x_3))x_4)x_5)\cdots)x_{k+1},$$

 (2^*) and (4^*) . Then we use

$$stair((uw), \ldots, (uw)) \approx stair(u, \ldots, u) stair(w, \ldots, w)$$

and

$$stair(u, \ldots, u)stair(w, \ldots, w) \approx stair(p, \ldots, p)stair(q, \ldots, q)$$

and

$$stair(p, \ldots, p), stair(q, \ldots, q) \approx stair((pq), \ldots, (pq))$$

to deduce

$$stair((uw), \ldots, (uw)) \approx stair((pq), \ldots, (pq)).$$

We will denote by Subs(u, x, w) the term obtained by replacing every occurrence of the variable x by the term u in the term w.

LEMMA 3.6. For any terms u and w and any variable x, we have $stair(Subs(u, x, w), \dots, stair(Subs(u, x, w)) = Subs(u, x, stair(w, \dots, w)).$

Proof. Let u, w be any terms and let x be any variable. We have

 $stair(Subs(u,x,w),\ldots,Subs(u,x,w))$

 $= [\cdots [Subs(u, x, w)Subs(u, x, w)]Subs(u, x, w)] \cdots Subs(u, x, w)$

 $= Subs(u, x, [\cdots [ww]w] \cdots w)$

 $= Subs(u, x, stair(w, \ldots, w)).$

Now we are ready to prove that the derived list is indeed a deduction of our identity $stair(s, ..., s) \approx stair(t, ..., t)$ from the identities in $\Sigma_{N_k(B)} \bigcup stair(\Sigma_B)$, which will complete the proof of Theorem 3.1.

LEMMA 3.7. The derived list is a deduction of $stair(s, ..., s) \approx stair(t, ..., t)$ from $\Sigma_{N_k(B)} \bigcup stair(\Sigma_B)$.

Proof. We need to verify that the justification, the rule of deduction used on previous steps, is the same for each step j in the derived list as the justification for step j in the given deduction. Consider the identity $u_j \approx w_j$ at any step j in the given deduction. If step j was an instance of an identity from Σ_B , then step j in the derived list is an instance of the corresponding identity from $stair(\Sigma_B)$. If step j was an instance of the reflexive, symmetric, or transitive rules of deduction, then clearly step j in the derived list is an instance of the same rule.

If step j in the given deduction was an instance of the compatibility rule on two previous steps c and d, then step j involved deducing $u_c u_d \approx w_c w_d$ from $u_c \approx w_c$ and $u_d \approx w_d$. According to our construction of the derived list, step j in the derived list is $stair(u_c u_d, \ldots, u_c u_d) \approx stair(w_c w_d, \ldots, w_c w_d)$.

This is not what we obtain from the application of the compatibility rule to steps c and d in the derived list. Instead, we obtain the identity $stair(u_c, \ldots, u_c)stair(u_d, \ldots, u_d) \approx stair(w_c, \ldots, w_c)stair(w_d, \ldots, w_d)$. But by Lemma 3.5 we can produce a deduction of

$$stair(u_c u_d, \ldots, u_c u_d) \approx stair(w_c w_d, \ldots, w_c w_d)$$

from $\Sigma_{N_k(B)}$ and the identity

$$stair(u_c, \ldots, u_c)stair(u_d, \ldots, u_d) \approx stair(w_c, \ldots, w_c)stair(w_d, \ldots, w_d).$$

If step j in the given deduction was an instance of the substitution rule on a previous step e, then step j in the given deduction was $Subs(z, x, u_e) \approx$ $Subs(z, x, w_e)$ and so step j in the derived list is

$$stair(Subs(z, x, u_e), \dots, Subs(z, x, u_e)) \ pprox stair(Subs(z, x, w_e), \dots, Subs(z, x, w_e)).$$

When we apply the substitution rule to step e in the derived list, we obtain

$$Subs(z, x, stair(u_e, \ldots, u_e)) \approx Subs(z, x, stair(w_e, \ldots, w_e)).$$

By Lemma 3.6,

$$stair(Subs(z, x, u_e), \dots, Subs(z, x, u_e)) = Subs(z, x, stair(u_e, \dots, u_e))$$

and

$$stair(Subs(z, x, w_e), \ldots, Subs(z, x, w_e)) = Subs(z, x, stair(w_e, \ldots, w_e));$$

hence step j in the derived list is an instance of the substitution rule applied to step e in the derived list.

We conclude this section with a look at the special cases k = 1, 2. As noted above, the associative law still holds in $N_k(B)$ for these values of k, and so we have a simplified version of the basis identities from Theorem 1. In particular, we can use associativity to omit brackets from terms in the identities. For k = 1, 2, our basis $\Sigma_{N_k(B)}$ consists of:

(1) Associativity	$x_1(x_2x_3)\approx (x_1x_2)x_3.$
(2) k -Normal Idempotence	$x_1x_2x_3\cdots x_{k+1}\approx x_1x_1x_2x_3\cdots x_{k+1}$
	$x_1x_2x_3\cdots x_{k+1}\approx x_1x_2x_3\cdots x_{k+1}x_{k+1}$

The proof that $\Sigma_{N_k(B)}$ forms a finite equational basis for $N_k(B)$ for k = 1, 2 is similar to the proof for $k \ge 3$, but much simpler because of the presence of associativity.

4. Equational bases for subvarieties of bands

Every subvariety V of the variety of all bands can be equationally defined by the associative and idempotent identities and one additional identity, which we will call the *defining identity* (with respect to B) of V. We shall show that for each such subvariety V, the identities of k-normal associativity and k-normal idempotence, plus one specific k-normal consequence of the defining identity of V form a finite equational basis for $N_k(V)$. We consider first the case that $k \geq 3$.

THEOREM 4.1. Let $V = Mod\{x(yz) \approx (xy)z, x^2 \approx x, p \approx q\}$ be a variety of bands, with defining identity $p \approx q$. The set $\Sigma_{N_k(V)}$ of identities listed below forms a finite equational basis for $N_k(V)$, for $k \geq 3$.

(1) k-Normal Associativity $stair(x_1, ..., x_{k+1}) \approx w(x_1, ..., x_{k+1})$ for all skeleton terms w other than the staircase term.

(2) k-Normal Idempotence

$$(\cdots (x_1 x_2) x_3) \cdots) x_{k+1} \approx (\cdots (x_1 x_1) x_2) x_3) \cdots) x_{k+1}$$
$$(\cdots (x_1 x_2) x_3) \cdots) x_{k+1} \approx (\cdots (x_1 x_2) x_3) \cdots) x_{k+1} x_{k+1}$$

(3) k-normal Defining Identity $stair(p, ..., p) \approx stair(q, ..., q)$.

Proof. We will use the same technique as in Section 3 to prove Theorem 4.1. Let $\Sigma_V = \{x(yz) \approx (xy)z, x^2 \approx x, p \approx q\}$ be a basis for V. The identities of $\Sigma_{N_k(V)}$ are all k-normal consequences of the identities in Σ_V . Let $s \approx t$ be any identity that holds in V such that s, t have depth $\geq k$. We want to show that $s \approx stair(s, \ldots, s)$, $stair(s, \ldots, s) \approx stair(t, \ldots, t)$, and $stair(t, \ldots, t) \approx t$ can each be deduced from $\Sigma_{N_k(V)}$, using the five rules of deduction.

First, by Lemma 3.3 the identities $s \approx stair(s, \ldots, s)$ and $stair(t, \ldots, t) \approx t$ can be deduced from $\Sigma_{N_k(B)}$; and since $\Sigma_{N_k(B)} \subseteq \Sigma_{N_k(V)}$, these two identities can certainly also be deduced from $\Sigma_{N_k(V)}$. As before, we need some additional identities: we set

$$stair(\Sigma_V) = \{stair(u, \ldots, u) pprox stair(w, \ldots, w) \mid u pprox w \in \Sigma_V\},$$

and show that this set of identities can be deduced from $\Sigma_{N_k(V)}$. The deductions for associativity and idempotence can be obtained exactly as in Lemma 3.4, using only $\Sigma_{N_k(B)}$, while the third identity $stair(p, \ldots, p) \approx stair(q, \ldots, q)$ is in fact part of our basis set $\Sigma_{N_k(V)}$.

Next we want to prove that $stair(s, \ldots, s) \approx stair(t, \ldots, t)$ can be deduced from $\Sigma_{N_k(V)}$. Defining the given deduction and the derived list as in Section 3, we show that the derived list is indeed a deduction of $stair(s, \ldots, s) \approx stair(t, \ldots, t)$ from $\Sigma_{N_k(V)} \bigcup stair(\Sigma_V)$. The proof of this is identical to the proof of Lemma 3.7. The only possible difficulty is the case where step j in the given deduction was an instance of the compatibility rule on two previous steps c and d. In this case, step j has $u_c u_d \approx$ $w_c w_d$ deduced from $u_c \approx w_c$ and $u_d \approx w_d$. According to our construction of the derived list, step j in the derived list is $stair(u_c u_d, \ldots, u_c u_d) \approx$ $stair(w_c w_d, \ldots, w_c w_d)$, but when we apply the compatibility rule to steps c and d in the derived list we obtain $stair(u_c, \ldots, u_c)stair(u_d, \ldots, u_d) \approx$ $stair(w_c, \ldots, w_c)stair(w_d, \ldots, w_d)$ instead. However, by Lemma 3.5 we can produce a deduction of $stair(u_c u_d, \ldots, u_c u_d) \approx stair(w_c w_d, \ldots, w_c w_d)$ from $\Sigma_{N_k(B)}$ and the identity

$$stair(u_c, \ldots, u_c) stair(u_d, \ldots, u_d) \approx stair(w_c, \ldots, w_c) stair(w_d, \ldots, w_d).$$

But since $\Sigma_{N_k(B)} \subseteq \Sigma_{N_k(V)}$, we can still produce a deduction of

$$stair(u_c u_d, \dots, u_c u_d) pprox stair(w_c w_d, \dots, w_c w_d)$$

from $\Sigma_{N_k(V)}$ and the identity

 $stair(u_c, \ldots, u_c)stair(u_d, \ldots, u_d) \approx stair(w_c, \ldots, w_c)stair(w_d, \ldots, w_d).$

This shows that $stair(s, \ldots, s) \approx stair(t, \ldots, t)$ can be deduced from $\Sigma_{N_k(V)} \bigcup stair(\Sigma_V)$ and hence from $\Sigma_{N_k(V)}$. Since $s \approx stair(s, \ldots, s)$ and $stair(t, \ldots, t) \approx t$ can also be deduced from $\Sigma_{N_k(V)}$, so can $s \approx t$.

In the special cases that k equals 1 or 2, we can simplify our basis for $N_k(V)$. Associativity still holds, so we can simply use the associative identity instead of the k-normal associativity basis from Section 2; and the remaining identities in the basis can be simplified by the omission of brackets. This gives us the following basis for $N_k(V)$, when k = 1, 2 and V is the variety of bands determined by the defining identity $p \approx q$:

(1) Associativity	$x_1(x_2x_3)\approx (x_1x_2)x_3.$
(2) k -Normal Idempotence	$x_1x_2x_3\cdots x_{k+1}\approx x_1x_1x_2x_3\cdots x_{k+1}$
	$x_1x_2x_3\cdots x_{k+1}\approx x_1x_2x_3\cdots x_{k+1}x_{k+1}$
(3) k -normal Defining Identity	$p^{k+1} \approx q^{k+1}.$

The finite basis given for $N_k(V)$ in Theorem 4.1 is of course not unique. We now give a different basis for $N_k(V)$, for several well-known varieties V of bands. In each case the new basis consists of the k-normal associativity identities, the k-normal idempotence identities, and one additional identity; we list for each variety only the additional identity.

Subvariety	Additional Identity
Left Zero Bands	$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_1x_1)x_2)x_3)\cdots)x_k.$
Right Zero Bands	$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\ pprox(\cdots(x_2x_3)x_4)\cdots)x_{k+1})x_{k+1}.$
Semilattices	$(\cdots (x_1 x_2) x_3) \cdots)x_{k+1} \approx (\cdots (x_2 x_1) x_3) x_4) \cdots)x_{k+1}$ $(\cdots (x_1 x_2) x_3) \cdots)x_{k-1})x_k)x_{k+1}$ $\approx (\cdots (x_1 x_2) x_3) \cdots)x_{k-1})x_{k+1})x_k.$
Rectangular Bands	$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_1x_1)x_3)x_4)\cdots)x_{k+1}.$
Normal Bands	$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\ pprox(\cdots(x_1x_3)x_2)x_4)x_5)\cdots)x_{k+1}.$
Left Normal Bands	$(\cdots (x_1 x_2) x_3) \cdots) x_{k-1}) x_k) x_{k+1} \ pprox (\cdots (x_1 x_2) x_3) \cdots) x_{k-1}) x_{k+1}) x_k.$
Right Normal Bands	$(\cdots(x_1x_2)x_3)\cdots)x_{k+1}\approx(\cdots(x_2x_1)x_3)x_4)\cdots)x_{k+1}.$

The proofs for these bases are similar to the proof given for Theorem 4.1. For each choice of V, with defining identity $p \approx q$, we need to prove that $stair(p, \ldots, p) \approx stair(q, \ldots, q)$ can be deduced from the proposed new basis for $N_k(V)$. These deductions are straightforward and involve the use of the identities $(2a), (2b), (1^*), (2^*), (3^*), (4^*)$, and the additional identities listed above.

References

- P. A. Birjukov, Varieties of idempotent semigroups, Algebra i Logika 9 (1970), 255– 273 (in Russian).
- [2] K. Denecke and S. L. Wismath, A Characterization of k-normal varieties, Algebra Universalis 51 (2004), no. 4, 395-409.
- [3] K. Denecke and S. L. Wismath, Valuations of terms, Algebra Universalis 50 (2003), no. 1, 107-128.
- [4] C. Fennemore, All varieties of bands I, II, Math. Nachr. 48 (1971), 237-252, 253-262.
- [5] J. A. Gerhard, The lattice of equational classes of idempotent semigroups, J. Algebra 15 (1970), 195-224.
- [6] J. A. Gerhard and M. Petrich, Varieties of bands revisited, Proc. London Math. Soc. 58 (1989), no. 3, 323-350.
- [7] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990), no. 3, 387-397.
- [8] C. Masse, H. Wang and S. L. Wismath, A basis for the k-normalization of semigroups, preprint, 2006.

MATH/C.S. DEPT. UNIVERSITY OF LETHBRIDGE 4401 University Drive LETHBRIDGE, AB., CANADA T1K-3M4 E-mail: wismaths@cs.uleth.ca

Received December 4, 2006.