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BASES FOR THE ^-NORMALIZATIONS 
OF VARIETIES OF BANDS 

Abstract. The usual depth measurement on terms of a fixed type type r assigns to 
each term a non-negative integer called its depth. For k > 1, an identity s « t of type r is 
said to be Abnormal (with respect to the depth measurement) if either s = t or both s and 
t have depth > k. Taking k = 1 gives the well-known property of normality of identities. 
A variety is called Abnormal (with respect to the depth measurement) if all its identities 
are A;-normal. For any variety V, there is a least fc-normal variety Nk(V) containing V, the 
variety determined by the set of all fc-normal identities of V. In this paper we produce for 
every subvariety V of the variety B of bands (idempotent semigroups) a finite equational 
basis for Nk(V), for k > 1. 

1. Introduction 
Let r = (n,) lg/ be any type of algebras, with an operation symbol fa of 

arity rii for each i £ /. Let X = {xi,x2, X3,...} be a set of variable symbols, 
and let WT(X) be the set of all terms of type r formed using variables from 
X . We will use the well-known Galois connection Id — Mod between classes 
of algebras and sets of identities. For any class K of algebras of type r and 
any set E of identities of type r, we have 

ModTi — {algebras A of type r | A satisfies all identities in £ } , 

and 

IdK = {identities s « t of type r | all algebras in K satisfy s ~ i } . 

For each t G WT(X), we denote by v(t) the depth of t, a parameter which 
is defined inductively by 
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(i) v(t) = 0, if t is a variable; 
(ii) v(t) = 1 + max{v(tj) : 1 < j < rii}, if t is a composite term t = 

fi(ti,..., tni), for some i £ I and some terms ¿ i , . . . , tUi. 
When a term is portrayed by a tree diagram, with the nodes correspond-

ing to operation symbols in the term and the leaves to variable symbols, the 
depth of the term t corresponds to the length of the longest path from root 
to leaves in the tree diagram for t. The depth parameter defines a valuation 
function v on the set of all terms of type r (see [3]). 

Let fc > 0 be any natural number. An identity s « t of type r is 
called k-normal (with respect to the depth valuation) if either s = t or v(t), 
v(s) > k. We denote by iVfc(r) the set of all fc-normal identities of type r . 
It was proved in [3] that Abnormality with respect to the depth of terms is a 
hereditary property of identities, meaning that the set Nk{r) is closed under 
the usual five rules of deduction for identities. This is equivalent to the fact 
that A^t(r) is an equational theory. For a variety V of type r , we consider 
the set Idk V = iVfc(r) C) Id V of all fc-normal identities satisfied by V. This 
is an equational theory, and the variety it determines, Nk(V) = Mod Idk V, 
is called the k-normalization of V. It can happen that Nk(V) = V, when 
every identity satisfied by V is fc-normal, and in this case we say that V is a 
k-normal variety. Otherwise V is a proper subvariety of Nk(V), and Nk(V) 
is the least fc-normal variety to contain V. The case k = 1 gives the usual 
definitions of a normal identity or variety and the normalization of V; see 
for instance [7]. 

The variety Nk(V) is defined equationally, by means of the fc-normal 
identities of V. An algebraic characterization of the algebras in Nk(V) 
was given by Denecke and Wismath in [2], using the concept of a fc-choice 
algebra. They showed that any algebra in Nk(V) is a homomorphic image 
of a fc-choice algebra constructed from an algebra in V. 

In this paper we return to the equational approach, to examine the 
question of when the variety Ni~(V) will have a finite basis. We consider the 
subvarieties of the type (2) variety B of bands (idempotent semigroups), 
and produce for each such subvariety V a finite equational basis for Nk(V), 
for fc > 1. Section 2 provides the necessary background: a description of 
the countably infinite collection of varieties of bands, and a summary of the 
finite basis (from [8]) for the variety Nk(Sem), for fc > 1, where Sem is 
the variety of all semigroups. We will refer to the identities in this basis 
as the k-normal associative identities. In Section 3, we add two additional 
k-normal idempotent identities to this basis, to produce a basis for N'K(B). 
Finally in Section 4 we show that for any proper subvariety V of B, there 
is a finite equational basis for Nk(V) consisting of the basis for Nk(B) plus 
one additional fc-normal identity (determined by V). 
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2. Background information 
In this section we present some background information about the variety 

Sem of all semigroups and the variety B of bands and its subvarieties. All 
of these varieties are of type (2), and we shall follow the convention of 
using juxtaposition instead of the binary operation symbol /. Thus Sem 
= Mod{x(yz) sa (xy)z}, the model class determined by the associative law, 
and B = Mod{x(yz) « (xy)z, x2 « x}, the variety of idempotent semigroups 
or bands. 

It is known that B has a countably infinite number of subvarieties, and 
the lattice they form has been completely described by Birjukov ([1]), Fen-
nemore ([4]), Gerhard ([5]) and Gerhard and Petrich ([6]). For our purposes, 
the most significant feature of these varieties is that each proper subvariety 
of B is equationally defined by associativity, idempotence, and one addi-
tional identity. 

We now describe the equational bases for the varieties Nk(Sem), for 
A; > 1, as produced in [8]. First, we observe that the associativity identity is 
actually fc-normal for k = 1,2. Thus for these k-values we have Nk(Sem) = 
Sem, and the set consisting of the associative identity is a basis. So we need 
a basis only for the case that k >3. 

DEFINITION 2.1. Let k > 1. A type (2) term will be called a skeleton 
term (of depth k) if it contains exactly k occurrences of / and exactly one 
occurrence of each of the variables x\,..., Xfc+i, in that order from left to 
right in the term, and no other variables. 

For k = 1, there is only one skeleton term, the term f(x\, X2). The 
skeleton terms for A; = 3 are given in Figure 1. In general, there are 2k~1 

skeleton terms for k > 2. 

Xl X2 X2 x3 x2 X3 X3 X4 

DEFINITION 2.2. A staircase term is any term of the form 

/(/(• • • {f{xin xi2)i xis)i • • •)ixik) 

for some variables x^ , . . . , X{p. For any k > 1, we shall refer to the term 
stair = stair{xi,... ,xk+i) = f(f(...(f(x1,x2),x3),...),xk+1), shown in 

/ / / / 
Figure 1 
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Figure 2 below, as the staircase term of depth k. This is one of the skeleton 
terms of depth k. 

Figure 2 

THEOREM 2.3 ([8]). Let k> 3. The set 

^Nk(Sem) = {stair « w | w any depth k non-stair skeleton term,} 

forms a finite equational basis for the variety Nk(Sem). 

We shall refer to the identities in the basis £Nk(Sem) the k-normal 
associativity identities. 

3. An equational basis for Nk(B) 

The variety B of all bands is equationally defined by the two identities 
of associativity and idempotence. As noted above, associativity is fc-normal 
for k = 1 ,2 but not fc-normal for k > 3. The idempotent identity x « 
f(x,x) is not Abnormal for any k > 1. That means that Nk(B) no longer 
satisfies idempotence for k > 1, although it does still satisfy any A;-normal 
consequences of idempotence. We shall consider first the case that k > 3, 
leaving till later the simpler cases of k = 1,2. 

THEOREM 3.1. Let k > 3. A finite equational basis for the variety Nk(B) is 
given by the set Ejvfc(£) °f the following identities: 

k-Normal Associativity 

(1) stair(xi,...,xk+i) &w(xi,...,xk+1) 

for all non-staircase skeleton terms w. 

k-Normal Idempotence 

(2a) (• • • (212:2)23) • • • )%k+i ~ (• • • {xixi)x-2)xz) • • • )x f c+i 

(26) (• • • (xix2)x3) • • • )xk+i Ri (• • • (xix2)x3) • • • )xk+i)xk+i. 
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Note that all of the identities in a r e normal consequences of as-
sociativity or idempotence, and hence hold in Nk(B). To prove Theorem 3.1, 
we will show that we can produce a deduction of any /c-riormal band identity 
s « t from the set £jvfc(B) using the five rules of deduction. Our proof will use 
the (k + Invariable staircase term stair — stair(xi,X2, • • •, Xfc+i) from Sec-
tion 2. Our strategy will be to deduce the three identities s & stair ( s , . . . , s), 
stair(s,..., s) ps stair(t,..., t), and stair(t,..., t ) « t from Ejyfc(B)> allow-
ing us to conclude s & t. We start by deducing four identities from Y,Nk(B) 
that we will use in subsequent proofs. 

LEMMA 3 .2 . The following identities are consequences of the identities in 
SNk(B) : 

(1*) (• • • (x1x2)x3) • • • )xk+i « (• • • (xixi)xi) • • • )xi)x2)x3) • • • )xk+i, 

with k or k + 1 occurrences of x i on the right side of the equation. 

(2*) (• • • ( x i x 2 ) x 3 ) • • • )xk+1 « (• • • (xix2)x3) • • • )xk+i) • • • )xk+i, 

with k or k + 1 occurrences of xk+1 on the right side of the equation. 

(3*) (• • • (xix2)x3) • • • )xk+2 « (• • • (xix2)x3) • • • )xk)(xk+1xk+2). 

(4*) (• • • (xirE2)a;3) • • • )xk)(xk+1xk+2) 

P r o o f . To deduce (1*), we first apply the substitution deduction rule on 
identity (2a) from our basis, to replace variable Xj by Xj-i for 2 < j < k +1. 
This gives us (• • • (xixi)x2) • • • )xk « (• • • (xixi)xi)x2) • • • )xk. Then we use 
the compatibility deduction rule on this identity and x^+i ~ xk+\ to obtain 
(• • • (xixi)x2) • • • )xfc+i « (• • • (xixi)xi)x2) • • • )xk+i. By transitivity then 
we get (• • • (xix2)x3) • • • )xk+i ~ (• • • (xixi)xi)x2) • • • )xk+i. Next we use 
the substitution rule on identity (2a) again, this time replacing X2 with xi 
and Xj with Xj-2 for 3 < j < k + 1. This gives (• • • (xixi)xi)x2) • • • )x^_i « 
(• • • (xixi)xi)xi)x2) • • • )xjt_i. Multiplying this identity on the right by xk 

and then again on the right by xk+\ (by the compatibility deduction rule) 
gives us (• • • (xixi)xi)x 2) • • • )xk+i « (• • • (xixi)xi)xi)x 2 ) • • • )x f c+i. We ap-
ply transitivity again to obtain 

(• • • (xix2)x3) • • • )xk+1 sa (• • • (xixi)xi)xi)x 2 ) • • • )xk+1. 

With repeated applications of substitution, compatibility and transitivity 
we obtain (1*). 

The deduction of (2*) is similar. We first use compatibility on identity 
(26) and xK+I PH xk+\ to obtain 

(• • • (xix2)x3) • • • )xfc+i)xfc+i « (• • • (xix2)x3) • • • )x f e+1)x f c+1)x f c+1 . 
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Transitivity then gives 

(• • ' {x\X2)xz) • • • )xk+\ ~ (• • • {xiX2)Xz) • • • )xk+i)xk+i)xk+\. 

Then we alternate using compatibility on xk+\ ~ xk+\ and the previous 
step in our deduction with transitivity on (26) and the previous step in the 
deduction to obtain (2*). 

For (3*), we start with the identity 

(• • • {xix2)x3) • • • )xk+1 m (• • • ( x i ( x 2 x 3 ) ) x 4 ) • • • )xk+1, 

which is one of the fc-normal associativity consequences from the set £ . 
Using the compatibility rule we can multiply both sides of the identity on 
the right by xk+2 to get 

(• • • (xix2)x3) • • • )xk+i)xk+2 « (• • • (xi(x2x3))x4) • • • )xk+x)xk+2. 

Next we apply the substitution rule to the Ejvfc(B) identity 

(• • • (x1x2)x3) • • • )xk+l « X\[(• • • (X2Xz)Xi) • • • )xk+l] 

to replace the variable Xj with Xj+1, for 3 < j < k + 1, and the variable x2 

with x2x3; this results in 

(• • • (xi(x2x3))x4) • • • )xk+2 « • • (x2xz)xi) • • • )xk+2\. 

Prom transitivity we obtain the identity 

(• • • (£1x2)23) • • ' )xk+i)xk+2 » xi[(- • • (x2x3)x4) • • • )xfc+2], 

which we shall denote by (1+ ) . 
Now we replace Xj with xj+i, for 1 < j < k + 1, in the Sjvfc(s) iden-

tity (• • • (x ix 2 ) x 3 ) • • • )xk+1 « xi(x2{- • • (xk-i(xkxk+i) •••). Applying the 
compatibility rule on the resulting identity and the identity x\ « x\ gives 
X\[{• • • (X2X3)X4) • • • )xk+2] « Xi(x2(• • • (xk(xk+ixk+2) • • • ), which we denote 

by (2+ ) . 
Finally, we use xi(x2(- • • (xk-i{xkxk+i) • • •) & • • (xix2)x3) • •-)xk+i 

and replace xk+\ with xk+iXk+2. This gives the following identity (3+ ) : 

X\{x2{• • • (xk-i(xk(xk+1xk+2) ...)«(.•• (xix2)a;3) • • • )(xk+ixk+2). 

Our identity (3*) then follows from (1+), (2+), and (3+). 
To deduce (4*), we apply the substitution rule on identity (26), replacing 

Xj with Xj+1 for 2 < j < k + 1, and x\ with x\x2. This leads to 

(1°) (• • • (a; ix2 )x3 ) • • • )xk+2 sa (• • • ( x i x 2 ) x 3 ) • • • )xk+2)xk+2. 

We then apply the compatibility rule on identity (3*) from above and 
xk+2 « xk+2 to obtain 

(2° ) (• • • (xix2)xs) • • • )xk+i)xk+2)xk+2 

~ (• • • (xix2)x3) • • • )(xk+1xk+2))xk+2. 
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From (• • • (xix2)x3) • • •)xk)(xk+1xk+2) « (• • • (xix2)x3) • • - )xk+2, (1°) and 
(2°) we obtain (4*). • 

LEMMA 3 . 3 . For any term u of depth > k, the identity u SS stair(u,..., u) 
can be deduced from Y>Nk(By 

P r o o f . We first note that it is straightforward to deduce from Sjvfc(s) the 
identity 

stair(x i , . . . , xk+1) « stair (stair (x i , . . . , . . . , stair(x i , . . . , Xfc+i)), 

using the identities (2*), (1*) and (3*) from the previous proof and identity 
(26). 

Now let u be any term of depth > k. The depth restriction means that 
we can write u = w(u\,..., uk+i), for some skeleton term w and some terms 

..., uk+1- Thus we have 
u = w(ui,...,uk+1) 
& stair(ui,..., uk+1) from the fc-associative identities 
ss stair (stair (ui,..., uk+1),..., stair(u\,... ,uk+1)) from above 
w stair(u,..., u) since w « stair. 

Therefore, u ~ stair(u,..., u) can be deduced from the available identi-
ties. • 

We have shown so far that for any Abnormal band identity s ss t, we 
can deduce s « stair (s,..., s) and stair (t,... ,t) « t from All that 
remains for our proof is to show that stair(s,..., s) « stair(t,..., t) can 
also be deduced from ENk(B)-

Since s « t holds in B there is a deduction of it, using the five rules of 
deduction, from the usual basis = {x(yz) ~ (xy)z, x2 ~ x} for the variety 
of bands. We shall refer to this deduction as the given deduction. Now, we 
produce a new list of identities called the derived list by replacing each step 
Uj « Wj in the given deduction by stair(uj,... ,Uj) ~ stair(wj,... ,Wj). 
We want to show that the derived list is a deduction of stair(s,..., s) ~ 
stair(t, • • • ,t) from and some of its consequences. In particular, we 
want to be able to use in addition to the identities in stair (£#) = 
{stair(p,... ,p) ss stair(q,... ,q) | p ^ q E Sb}. 

LEMMA 3 .4 . The identities in the set stair(T,B) can be deduced from Y,Nk(By 

P r o o f . We need to consider the "staired" version of the two basis identi-
ties associativity and idempotence. First, stair(xi(x2xz),... ,x\(x2xz)) sa 
stair((xix2)xs,..., (xix2)xs) can be deduced from £jvfc(B) i n a straightfor-
ward deduction using the identities 

(• • • (xix2)x3) • • • )xk+i « (• • • (xi(x2x3))x4)x5) • • • )xk+1, 
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(1*) and (2*), 

xi(x2(• • • (xk2((xklxk)xk+l)) • • •) « xi(x2(- • • (xkl(xkxk+i) • • •) 

and 
(• • • (xix2)x3) • • • )xk+i PS xi(x2(- • • (xkl{xkxk+i) • • • )• 

The deduction of stair(x\xi,..., x\x{) » stair(xi,..., x\) for idempotence 
is similarly straightforward, using the identities (2a), (1*), (2*) and (4*). • 

Now it suffices to show that the identity stair(s,..., s) & stair(t,..., t) 
can be deduced from S]vfc(B) (J stair(T^B)- To prove this, we will show that 
each step j in the derived list can be justified, by the same justification used 
for step j in the given deduction. We will use the following two lemmas to 
handle two of the cases. 

LEMMA 3.5. For any terms u, w, p and q, the identity 

stair((uw),..., (uw)) « stair((pq),..., (pq)) 

can be deduced from the identity 

stair(u,..., u)stair(w,... ,w) & stair(p,... ,p)stair(q,..., q) 

and the identities in Sjvfc(B)-

Proo f . First we note that the two identities 

stair((uw),..., (uw)) & stair(u,..., u)stair(w,..., w) 

and 

stair (p,..., p)stair(q, stair((pq),..., (pq)) 

can be deduced from the identities 

(• • • (^1^2)^3) • • • )xk+1 « Xi[(- • • (x2xz)xi) • • • )xfc+i], 

(1*), 

(• • • (xix2)x3) • • • )xk+1 sa (• • • (xi(x2x3))x4)x5) • • • )xk+1, 

(2*) and (4*). Then we use 

stair((uw),..., (uw)) « stair(u,..., u)stair(w,... ,w) 

and 

stair(u,..., u)stair(w,...,«;)« stair(p,... ,p)stair(q,..., q) 

and 

stair(p,... ,p),stair(q,..., q) & stair((pq),..., (pq)) 

to deduce 

stair((uw),..., (uw)) RJ stair((pq),..., (pq)). • 

We will denote by Subs(u,x,w) the term obtained by replacing every 
occurrence of the variable x by the term u in the term w. 
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LEMMA 3.6. For any terms u and w and any variable x, we have 

stair(Subs(u, x, w),..., stair(Subs(u, x, w)) = Subs(u, x, stair(w,..., w)). 

P r o o f . Let u, w be any terms and let x be any variable. We have 
stair(Subs(u, x,w),..., Subs(u, x, w)) 

= [• • • [Subs(u, x, w)Subs(u, x, w)]Subs(u, x, u;)] • • • Subs(u, x, w) 
= Subs(u, x, [• • • • • -w) 
= Subs(u,x,stair(w,... ,w)). • 

Now we are ready to prove that the derived list is indeed a deduc-
tion of our identity stair(s,..., s) « stair(t,..., t ) from the identities in 
^Nk(B) U stair(T^b), which will complete the proof of Theorem 3.1. 

LEMMA 3.7. The derived list is a deduction of stair {s,..., s)^stair(t,..., t ) 
from Y,Nk(B)\Jstair(T,B)-

P r o o f . We need to verify that the justification, the rule of deduction used 
on previous steps, is the same for each step j in the derived list as the justi-
fication for step j in the given deduction. Consider the identity u3 « Wj at 
any step j in the given deduction. If step j was an instance of an identity 
from then step j in the derived list is an instance of the corresponding 
identity from stair^Es)- If step j was an instance of the reflexive, symmet-
ric, or transitive rules of deduction, then clearly step j in the derived list is 
an instance of the same rule. 

If step j in the given deduction was an instance of the compatibility rule 
on two previous steps c and d, then step j involved deducing ucu^ ~ wcw^ 
from uc ~ wc and u^ ~ w^. According to our construction of the derived list, 
step j in the derived list is stair(ucud,..., ucud) ~ stair(wcwd,..., wcwd)-

This is not what we obtain from the application of the compatibility 
rule to steps c and d in the derived list. Instead, we obtain the identity 
stair(uc,..., uc)stair(ud,..., Ud) « stair(wc, • • •, wc)stair(wd, • • •, Wd)• B u t 
by Lemma 3.5 we can produce a deduction of 

stair(ucud, • • • , ucUd) ~ stair(wcwd,wcwd) 

from and the identity 

stair(uc,..., uc)stair(ud, • • •, Ud) ~ stair(wc,..., wc)stair(wd,..., Wd)-

If step j in the given deduction was an instance of the substitution rule 
on a previous step e, then step j in the given deduction was Subs(z, x, ue) & 
Subs(z, x, we) and so step j in the derived list is 

stair(Subs(z, x, ue),..., Subs(z, x, ue)) 

« stair(Subs(z, x, we),..., Subs(z, x, we)). 
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When we apply the substitution rule to step e in the derived list, we obtain 

Subs(z, x, stair(ue,..., ue)) as Subs(z, x, stair(we,..., we)). 

By Lemma 3.6, 

stair(Subs(z, x, ue),Subs(z, x, ue)) = Subs(z, x, stair (ue,..., ue)) 

and 

stair(Subs(z, x, • • •, Subs(z, x, we)) = Subs(z, x, stair(we,..., u;e)); 

hence step j in the derived list is an instance of the substitution rule applied 
to step e in the derived list. • 

We conclude this section with a look at the special cases k = 1,2. As 
noted above, the associative law still holds in Nk(B) for these values of k, 
and so we have a simplified version of the basis identities from Theorem 1. 
In particular, we can use associativity to omit brackets from terms in the 
identities. For k = 1,2, our basis consists of: 

(1) Associativity xi{x2x%) ~ (x\X2)x3. 

(2) fc-Normal Idempotence X1X2X3 • • • ~ X1X1X2X3 • • • x^+i 

X\X2X% •• • Xfc+1 « X\X2Xz •• • Xk+lXk+1-

The proof that S/v^B) forms a finite equational basis for Nf~(B) for 
A; = 1,2 is similar to the proof for k > 3, but much simpler because of the 
presence of associativity. 

4. Equational bases for subvarieties of bands 
Every subvariety V of the variety of all bands can be equationally defined 

by the associative and idempotent identities and one additional identity, 
which we will call the defining identity (with respect to B) of V. We shall 
show that for each such subvariety V, the identities of fc-normal associativity 
and /c-normal idempotence, plus one specific fc-normal consequence of the 
defining identity of V form a finite equational basis for Nk(V). We consider 
first the case that k > 3. 

THEOREM 4.1. Let V = Mod{x(yz) (xy)z,x2 SA x, p & q} be a variety of 
bands, with defining identity p RJ q. The set S^^y) of identities listed below 
forms a finite equational basis for Nk(V), for k > 3. 

(1) k-Normal Associativity stair(x 1,... ,Xjfc+i) ~ w(x 1,... ,Xk+\) 

for all skeleton terms w other than the 

staircase term. 
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(2) k-Normal Idempotence 

(• • • (xix2)x3) • • • )®fe+1 w (• • • (x1xi)x2)x3) • • • )xk+i 

(• • • {xix2)x3) • • • )xk+l « (• • • (xix2)x3) • • • )xk+1)xk+i. 

(3) k-normal Defining Identity stair(p,... ,p) ~ stair(q,... ,q). 

P r o o f . We will use the same technique as in Section 3 to prove Theo-
rem 4.1 . Let = { x ( y z ) ss (xy)z,x2 « x,p « q} be a basis for V. The 
identities of are all /c-normal consequences of the identities in Ey . 
Let s ss t be any identity that holds in V such that s, t have depth > k. We 
want to show that s « stair(s,..., s), stair(s,..., s) ¡=s stair(t,..., t), and 
stair(t,... , t ) « t can each be deduced from E ^ ^ ) » using the five rules of 
deduction. 

First , by L e m m a 3 .3 the identities s ss stair(s,... ,s) and stair(t, ...,t) 
« t can be deduced from E ; and since C these two 
identities can certainly also be deduced from Y,Nk(yy As before, we need 
some additional identities: we set 

stair (Hv) = {stair (u,...,«)« stair (w,... ,w) | u & w € Ey}, 

and show that this set of identities can be deduced from Ejvfc(v)- The de-
ductions for associativity and idempotence can be obtained exactly as in 
Lemma 3.4, using only Ejvfc(s)) while the third identity stair(p,... ,p) « 
stair(q,..., q) is in fact part of our basis set ENk{v)-

Next we want to prove that stair(s,..., s) ~ stair(t,..., t) can be de-
duced from ENk(V)- Defining the given deduction and the derived list 
as in Section 3, we show that the derived list is indeed a deduction of 
stair(s,..., s) « stair(t,..., t) from ( J stair(Ev)- T h e proof of this 
is identical to the proof of Lemma 3.7. The only possible difficulty is the 
case where step j in the given deduction was an instance of the compati-
bility rule on two previous steps c and d. In this case, step j has ucud ~ 
wcwd deduced from uc & wc and Ud « w^. According to our construc-
tion of the derived list, step j in the derived list is stair(ucud,..., ucud) ~ 
stair(wcWd, • • • ,wcwd), but when we apply the compatibility rule to steps 
c and d in the derived list we obtain stair(uc,... ,uc)stair(ud,. • • ,Ud) ~ 
stair(wc,..., wc)stair(wd,..., Wd) instead. However, by Lemma 3.5 we can 
produce a deduction of stair(ucud,..., ucud) ~ stair(wcwd,..., wcWd) from 
Ejvfc(s) and the identity 

stair(uc,..., uc)stair(ud,..., Ud) ~ stair(wc,..., wc)stair(wd, • • •, Wd)• 

But since ENk(B) ^Nk(v)i w e c a n still produce a deduction of 

stair(ucud,..., ucud) « stair(wcwd,..., wcwd) 
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from £jvfc(V) a n d the identity 

stair(uc, • • •, uc)stair(ud,..., uj) « stair(wc,..., wc)stair(wd,..., w 

This shows that stair(s,..., s) ~ stair (t, •.. ,t) can be deduced from 
^Nk(V) and hence from Y,Nk(Vy Since s & stair(s,... ,s) and 
stair(t,..., t) fa t can also be deduced from £jvfe(v)> so can s « t. m 

In the special cases that k equals 1 or 2, we can simplify our basis for 
Nk(V). Associativity still holds, so we can simply use the associative identity 
instead of the fc-normal associativity basis from Section 2; and the remaining 
identities in the basis can be simplified by the omission of brackets. This 
gives us the following basis for Nk{V), when k — 1,2 and V is the variety 
of bands determined by the defining identity p « q: 

(1) Associativity 

(2) fc-Normal Idempotence 
^1(^2^3) ~ {xix2)x3. 

XlX2X3•• • Zfc+i 
X\X2X3 • • • Xfc+i 

X1X1X2X3•• -Xk+l 

X1X2X3•••xk+ixk+1. 

fc+1 Jt+i (3) Abnormal Defining Identity p 

The finite basis given for Nk(V) in Theorem 4.1 is of course not unique. 
We now give a different basis for Nk(V), for several well-known varieties V 

of bands. In each case the new basis consists of the fc-normal associativity 
identities, the Abnormal idempotence identities, and one additional identity; 
we list for each variety only the additional identity. 

Subvariety 
Left Zero Bands 
Right Zero Bands 

Semilattices 

Additional Identity 

Rectangular Bands (• 

Normal Bands (• 

Left Normal Bands (• 

Right Normal Bands (• 

(xix2)x3) 
(£1X2)3:3) 

{xix2)xz) 

(xix2)x3) 

(xix2)x3) 

(x1x2)x3) 
«(.. 

(XIX2)X3) 

(xix2)x3) 

• • )Xk+1 ~ (• • • (xixi)x2)x3) • • • )xk. 

• •)Xk+l 

{X2X3)XÌ) • • • )Xk+\)xk+\. 

• • )Xk+1 ~ (• • • {x2Xl)x3)xA) • • • )xk+i 

• -)Xk-l)Xk)Xk+1 

{x1x2)x3) • • • )xk-i)xk+1)xk. 

• • )xk+l ~ (• • • {xixi)x3,)x^} • • • )xk+i. 

• •)xk+i 

(xix3)x2)x4)x5) • • - )xk+i. 

• • )xk-i)xk)xk+i 

{xix2)x3) • • • )xk-i)xk+i)xk. 

• • )Xk+l » (• • • {x2xi)x3)x4) • • • )xk+1. 
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The proofs for these bases are similar to the proof given for Theorem 4.1. 
For each choice of V, with defining identity p zt q, we need to prove that 
stair(p,... ,p) ra stair (q,..., q) can be deduced from the proposed new basis 
for Nk(V). These deductions are straightforward and involve the use of the 
identities (2a), (26), (1*), (2*), (3*), (4*), and the additional identities listed 
above. 
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