Yılmaz Gündüzalp

SEMI-SLANT SUBMERSIONS FROM ALMOST PRODUCT RIEMANNIAN MANIFOLDS

Communicated by S. Janeczko

Abstract. In this paper, we introduce semi-slant submersions from almost product Riemannian manifolds onto Riemannian manifolds. We give some examples, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion. We also find necessary and sufficient conditions for a semi-slant submersion to be totally geodesic.

1. Introduction

Given a C^∞-submersion π from a Riemannian manifold (M, g) onto a Riemannian manifold (B, g'), there are several kinds of submersions according to the conditions on it: e.g. Riemannian submersion ([5], [11]), slant submersion ([6], [12], [13]), almost Hermitian submersion [16], quaternionic submersion [7], etc. As we know, Riemannian submersions are related with physics and have their applications in the Yang–Mills theory ([3], [17]), Kaluza–Klein theory ([2], [8]), semi-invariant submersion([14]), supergravity and superstring theories ([9], [10]), etc. In [15], the author studied the slant and semi-slant submanifolds of an almost product Riemannian manifold. Let (M, g, F) be an almost product Riemannian manifold. A Riemannian submersion $\pi : (M, g, F) \to (N, g')$ is called a slant submersion if the angle $\theta(X)$ between FX and the space $\ker(\pi_*)_p$ is constant for any nonzero $X \in T_pM$ and $p \in M$ [6]. We call $\theta(X)$ a slant angle. The paper is organized as follows. In Section 2 we recall some notions needed for this paper. In Section 3 we give definition of semi-slant submersions and provide examples. We also investigate the geometry of leaves of the distributions. Finally, we give necessary and sufficient conditions for such submersions to be totally geodesic.

2010 Mathematics Subject Classification: 53C15, 53B20, 53C43.

Key words and phrases: almost product Riemannian manifold, Riemannian submersion, semi-slant submersion.

DOI: 10.1515/dema-2016-0029

© Copyright by Faculty of Mathematics and Information Science, Warsaw University of Technology
2. Preliminaries

In this section, we define almost product Riemannian manifolds, recall the notion of Riemannian submersions between Riemannian manifolds and give a brief review of basic facts of Riemannian submersions.

Let M be a m-dimensional manifold with a tensor F of type $(1,1)$ such that

$$F^2 = I, (F \neq I).$$

Then, we say that M is an almost product Riemannian manifold with almost product structure F. We put

$$P_1 = \frac{1}{2}(I + F), \quad P_2 = \frac{1}{2}(I - F).$$

Then we get

$$P_1 + P_2 = I, \quad P_1^2 = P_1, \quad P_2^2 = P_2, \quad P_1 P_2 = P_2 P_1 = 0, \quad F = P_1 - P_2.$$

Thus P_1 and P_2 define two complementary distributions P_1 and P_2. We easily see that the eigenvalues of F are $+1$ or -1.

If an almost product manifold M admits a Riemannian metric g such that

$$(1) \quad g(FX, FY) = g(X, Y)$$

for any vector fields X and Y on M, then M is called an almost product Riemannian manifold, denoted by (M, g, F).

Denote the Levi–Civita connection on M with respect to g by ∇. Then, M is called a locally product Riemannian manifold if F is parallel with respect to ∇, i.e.,

$$(2) \quad \nabla_X F = 0, X \in \Gamma(TM) \ [18].$$

Let (M, g) and (N, g') be two Riemannian manifolds. A surjective C^∞-map $\pi : M \to N$ is a C^∞-submersion if it has maximal rank at any point of M. Putting $\mathcal{V}_x = ker\pi_\ast x$, for any $x \in M$, we obtain an integrable distribution \mathcal{V}, which is called vertical distribution and corresponds to the foliation of M determined by the fibres of π. The complementary distribution \mathcal{H} of \mathcal{V}, determined by the Riemannian metric g, is called horizontal distribution. A C^∞-submersion $\pi : M \to N$ between two Riemannian manifolds (M, g) and (N, g') is called a Riemannian submersion if, at each point x of M, $\pi_\ast x$ preserves the length of the horizontal vectors. A horizontal vector field X on M is said to be basic if X is π-related to a vector field X' on N. It is clear that every vector field X' on N has a unique horizontal lift X to M and X is basic.

We recall that the sections of \mathcal{V}, respectively \mathcal{H}, are called the vertical vector fields, respectively horizontal vector fields. A Riemannian submersion
\(\pi : M \to N \) determines two \((1, 2)\) tensor fields \(T \) and \(A \) on \(M \), by the formulas:

\[
T(E, F) = T_E F = h \nabla_{vE} vF + v \nabla_{vE} hF
\]

and

\[
A(E, F) = A_E F = v \nabla_{hE} hF + h \nabla_{hE} vF
\]

for any \(E, F \in \Gamma(TM) \), where \(v \) and \(h \) are the vertical and horizontal projections (see [4]). From (3) and (4), one can obtain

\[
\nabla_U W = T_U W + \hat{\nabla}_U W;
\]

\[
\nabla_U X = T_U X + h(\nabla_U X);
\]

\[
\nabla_X U = v(\nabla_X U) + A_X U;
\]

\[
\nabla_X Y = A_X Y + h(\nabla_X Y),
\]

for any \(X, Y \in \Gamma((\ker \pi^\ast)^\perp) \), \(U, W \in \Gamma(\ker \pi^\ast) \). Moreover, if \(X \) is basic then

\[
h(\nabla_U X) = h(\nabla_X U) = A_X U.
\]

We note that for \(U, V \in \Gamma(\ker \pi^\ast) \), \(T_U V \) coincides with the second fundamental form of the immersion of the fibre submanifolds and for \(X, Y \in \Gamma((\ker \pi^\ast)^\perp) \), \(A_X Y = \frac{1}{2} v[X, Y] \) reflecting the complete integrability of the horizontal distribution \(\mathcal{H} \). It is known that \(A \) is alternating on the horizontal distribution: \(A_X Y = -A_Y X \), for \(X, Y \in \Gamma((\ker \pi^\ast)^\perp) \) and \(T \) is symmetric on the vertical distribution: \(T_U V = T_V U \), for \(U, V \in \Gamma(\ker \pi^\ast) \).

We now recall the following result which will be useful for later.

Lemma 2.1. (see [4], [11]) If \(\pi : M \to N \) is a Riemannian submersion and \(X, Y \) basic vector fields on \(M \), \(\pi \)-related to \(X' \) and \(Y' \) on \(N \), then we have the following properties

1. \(h[X, Y] \) is a basic vector field and \(\pi^\ast h[X, Y] = [X', Y'] \circ \pi \);
2. \(h(\nabla_X Y) \) is a basic vector field \(\pi \)-related to \((\nabla'_X, Y') \), where \(\nabla \) and \(\nabla' \) are the Levi–Civita connection on \(M \) and \(N \);
3. \([E, U] \in \Gamma(\ker \pi^\ast) \), for any \(U \in \Gamma(\ker \pi^\ast) \) and for any basic vector field \(E \).

Let \((M, g_M)\) and \((N, g_N)\) be Riemannian manifolds and \(\pi : M \to N \) is a smooth map. Then the second fundamental form of \(\pi \) is given by

\[
(\nabla_{\pi^\ast})(X, Y) = \nabla_{\pi^\ast X} \pi^\ast Y - \pi^\ast(\nabla_X Y)
\]

for \(X, Y \in \Gamma(TM) \), where we denote conveniently by \(\nabla \) the Levi–Civita connections of the metrics \(g_M \) and \(g_N \). Recall that \(\pi \) is said to be harmonic if \(\text{trace}(\nabla_{\pi^\ast}) = 0 \) and \(\pi \) is called a totally geodesic map if \((\nabla_{\pi^\ast})(X, Y) = 0 \) for \(X, Y \in \Gamma(TM) \) [1]. It is known that the second fundamental form is symmetric.
3. Semi-slant submersions

In this section, we define semi-slant submersions from an almost product Riemannian manifold onto a Riemannian manifold, investigate the integrability of distributions and obtain a necessary and sufficient condition for such submersions to be totally geodesic map.

Definition 3.1. Let \((M, g, F)\) be an almost product Riemannian manifold and \((N, g')\) be a Riemannian manifold. A Riemannian submersion \(\pi : (M, g, F) \to (N, g')\) is called a semi-slant submersion if there is a distribution \(D_1 \subset \ker \pi^*\) such that

\[
\ker \pi^* = D_1 \oplus D_2, \quad F(D_1) = D_1,
\]

and the angle \(\theta = \theta(X)\) between \(FX\) and the space \((D_2)_q\) is constant for nonzero \(X \in (D_2)_q\) and \(q \in M\), where \(D_2\) is the orthogonal complement of \(D_1\) in \(\ker \pi^*_q\). We call the angle \(\theta\) a semi-slant angle.

First, we give some examples of semi-slant submersions.

Example 1. Let \(\pi\) be a slant submersion from an almost product Riemannian manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\) [6]. Then the map \(\pi\) is a semi-slant submersion with \(D_2 = \ker \pi^*_q\).

Example 2. Let \(\pi\) be a semi-invariant submersion from an almost product Riemannian manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\) [14]. Then the map \(\pi\) is a semi-slant submersion with the semi-slant angle \(\cos^{-1}(0)\).

Note that given an Euclidean space \(\mathbb{R}^{2n}\) with coordinates \((x_1, \ldots, x_{2n})\) on \(\mathbb{R}^{2n}\), we can naturally choose an almost product structure \(F\) on \(\mathbb{R}^{2n}\) as follows:

\[
F\left(\frac{\partial}{\partial x_{2i}}\right) = \frac{\partial}{\partial x_{2i-1}}, \quad F\left(\frac{\partial}{\partial x_{2i-1}}\right) = \frac{\partial}{\partial x_{2i}},
\]

where \(i = 1, \ldots, n\).

Throughout this section, we will use this notation.

Example 3. Define a map \(\pi : \mathbb{R}^6 \to \mathbb{R}^2\) by

\[
\pi(x_1, \ldots, x_6) = (x_1 \sin \alpha - x_3 \cos \alpha, x_4),
\]

where \(0 < \alpha < 90\). Then the map \(\pi\) is a semi-slant submersion such that

\[
D_1 = \left\langle \frac{\partial}{\partial x_5}, \frac{\partial}{\partial x_6} \right\rangle \quad \text{and} \quad D_2 = \left\langle \frac{\partial}{\partial x_2}, \cos \alpha \frac{\partial}{\partial x_1} + \sin \alpha \frac{\partial}{\partial x_3} \right\rangle
\]

with the semi-slant angle \(\cos^{-1}(\alpha)\).

Example 4. Define a map \(\pi : \mathbb{R}^8 \to \mathbb{R}^2\) by

\[
\pi(x_1, \ldots, x_8) = \left(\frac{x_1 - x_3}{\sqrt{2}}, x_4\right),
\]
Then the map π is a semi-slant submersion such that

$$D_1 = \left\langle \frac{\partial}{\partial x_5}, \frac{\partial}{\partial x_6}, \frac{\partial}{\partial x_7}, \frac{\partial}{\partial x_8} \right\rangle \quad \text{and} \quad D_2 = \left\langle \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_3} \right\rangle$$

with the semi-slant angle $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

Example 5. Define a map $\pi : R^8 \to R^2$ by

$$\pi(x_1, \ldots, x_8) = (x_1 \cos \alpha - x_3 \sin \alpha, x_2 \sin \beta - x_4 \cos \beta),$$

where α and β are constant. Then the map π is a semi-slant submersion such that

$$D_1 = \left\langle \frac{\partial}{\partial x_5}, \frac{\partial}{\partial x_6}, \frac{\partial}{\partial x_7}, \frac{\partial}{\partial x_8} \right\rangle \quad \text{and} \quad D_2 = \left\langle \sin \alpha \frac{\partial}{\partial x_1} + \cos \alpha \frac{\partial}{\partial x_3}, \cos \beta \frac{\partial}{\partial x_2} + \sin \beta \frac{\partial}{\partial x_4} \right\rangle$$

with the semi-slant angle θ with $\cos \theta = |\sin(\alpha + \beta)|$.

Example 6. Define a map $\pi : R^{10} \to R^4$ by

$$\pi(x_1, \ldots, x_{10}) = \left(\frac{x_4 - x_6}{\sqrt{2}}, x_9, \frac{x_5 - x_7}{\sqrt{2}}, x_{10}\right).$$

Then the map π is a semi-slant submersion such that

$$D_1 = \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} \right\rangle \quad \text{and} \quad D_2 = \left\langle \frac{\partial}{\partial x_3}, \frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_6}, \frac{\partial}{\partial x_8}, \frac{\partial}{\partial x_9} + \frac{\partial}{\partial x_7} \right\rangle$$

with the semi-slant angle $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

Example 7. Define a map $\pi : R^8 \to R^2$ by

$$\pi(x_1, \ldots, x_8) = \left(x_1, x_2, \frac{x_5 + x_7}{\sqrt{2}}, \frac{x_6 - x_8}{\sqrt{2}}\right).$$

Then the map π is a semi-slant submersion such that

$$D_1 = \left\langle \frac{\partial}{\partial x_3}, \frac{\partial}{\partial x_4} \right\rangle \quad \text{and} \quad D_2 = \left\langle -\frac{\partial}{\partial x_5} + \frac{\partial}{\partial x_7}, \frac{\partial}{\partial x_6} + \frac{\partial}{\partial x_8} \right\rangle$$

with the semi-slant angle $\cos^{-1}(0)$.

Let $\pi : (M, g, F) \to (N, g')$ be a semi-slant submersion. Then there is a distribution $D_1 \subset \ker \pi_*$ such that

$$\ker \pi_* = D_1 \oplus D_2, \quad F(D_1) = D_1,$$

and the angle $\theta = \theta(X)$ between FX and the space $(D_2)_q$ is constant for nonzero $X \in (D_2)_q$ and $q \in M$, where D_2 is the orthogonal complement of D_1 in $\ker \pi_*$. Then for $X \in \Gamma(\ker \pi_*)$, we have

$$X = PX + QX,$$
where $PX \in \Gamma(D_1)$ and $QX \in \Gamma(D_2)$. For $X \in \Gamma(ker\pi_*)$, we get

$$FX = \phi X + \omega X,$$

where $\phi X \in \Gamma(ker\pi_*)$ and $\omega X \in \Gamma((ker\pi_*)^\perp)$. For $Z \in \Gamma((ker\pi_*)^\perp)$, we obtain

$$FZ = BZ + CZ,$$

where $BZ \in \Gamma(ker\pi_*)$ and $CZ \in \Gamma((ker\pi_*)^\perp)$. For $U \in \Gamma(TM)$, we have

$$U = vU + hU,$$

where $vU \in \Gamma(ker\pi_*)$ and $hU \in \Gamma((ker\pi_*)^\perp)$. Then

$$(ker\pi_*)^\perp = \omega D_2 \oplus \mu,$$

where μ is the orthogonal complement of ωD_2 in $(ker\pi_*)^\perp$ and is invariant under F. Furthermore,

$$\phi D_1 = D_1, \quad \omega D_1 = 0, \quad \phi D_2 \subset D_2, \quad B((ker\pi_*)^\perp) = D_2,$$

$$\phi^2 + B \omega = I, \quad C^2 + \omega B = I, \quad \omega \phi + C \omega = 0, \quad BC + \phi B = 0.$$

We define the covariant derivatives of ϕ and ω as follows

$$\nabla_X \phi Y = \hat{\nabla}_X \phi Y - \phi \hat{\nabla}_X Y$$

and

$$\nabla_X \omega Y = h\nabla_X \omega Y - \omega \hat{\nabla}_X Y$$

for $X, Y \in \Gamma(ker\pi_*)$, where $\hat{\nabla}_X Y = v\nabla_X Y$. Then we easily have

Lemma 3.1. Let (M, g, F) be a locally product manifold and (N, g') be a Riemannian manifold. Let $\pi : (M, g, F) \to (N, g')$ be a semi-slant submersion. Then we get

(a) \[\hat{\nabla}_X \phi Y + T_X \omega Y = \phi \hat{\nabla}_X Y + BT_X Y \]

\[T_X \phi Y + h\nabla_X \omega Y = \omega \hat{\nabla}_X Y + CT_X Y \]

for any $X, Y \in \Gamma(ker\pi_*)$.

(b) \[v\nabla_Z BW + A_Z CW = \phi A_Z W + Bh\nabla_Z W \]

\[A_Z BW + h\nabla_Z CW = \omega A_Z W + Ch\nabla_Z W \]

for $Z, W \in \Gamma((ker\pi_*)^\perp)$.

(c) \[\hat{\nabla}_X BZ + T_X CZ = \phi T_X Z + Bh\nabla_X Z \]

\[T_X BZ + h\nabla_X CZ = \omega T_X Z + Ch\nabla_X Z \]

for $X \in \Gamma(ker\pi_*)$ and $Z \in \Gamma((ker\pi_*)^\perp)$.
Theorem 3.1. Let \(\pi \) be a semi-slant submersion from an almost product Riemannian manifold \((M,g,F)\) onto a Riemannian manifold \((N,g')\). Then the distribution \(D_1\) is integrable if and only if we have
\[
\omega(\hat{\nabla}_X Y - \hat{\nabla}_Y X) = C(T_Y X - T_X Y)
\]
for \(X, Y \in \Gamma(D_1)\).

Proof. For \(X, Y \in \Gamma(D_1)\) and \(Z \in \Gamma((\ker \pi_*)^\perp)\), since \([X, Y] \in \Gamma(\ker \pi_*), \) from (5), (12) and (13) we get
\[
g(F[X, Y], Z) = g(F\nabla_X Y - F\nabla_Y X, Z)
\]
\[
= g(FT_X Y + F\hat{\nabla}_X Y - FT_Y X - F\hat{\nabla}_Y X, Z)
\]
\[
= g(BT_X Y + CT_X Y + \phi \hat{\nabla}_X Y + \omega \hat{\nabla}_X Y
\]
\[
- BT_Y X - \phi \hat{\nabla}_Y X - CT_Y X - \omega \hat{\nabla}_Y X, Z)
\]
\[
= g(CT_X Y + \omega \hat{\nabla}_X Y - CT_Y X - \omega \hat{\nabla}_Y X, Z).
\]
Therefore, we have the result. □

Theorem 3.2. Let \(\pi \) be a semi-slant submersion from an almost product Riemannian manifold \((M,g,F)\) onto a Riemannian manifold \((N,g')\). Then the slant distribution \(D_2\) is integrable if and only if we get
\[
P(\phi(\hat{\nabla}_X Y - \hat{\nabla}_Y X) + B(T_X Y - T_Y X)) = 0
\]
for \(X, Y \in \Gamma(D_2)\).

Proof. For \(X, Y \in \Gamma(D_2)\) and \(Z \in \Gamma(D_1)\), since \([X, Y] \in \Gamma(\ker \pi_*), \) from (5), (12) and (13) we obtain
\[
g(F[X, Y], Z) = g(F\nabla_X Y - F\nabla_Y X, Z)
\]
\[
= g(BT_X Y + \phi \hat{\nabla}_X Y - BT_Y X - \phi \hat{\nabla}_Y X, Z)
\]
which proves assertion. □

Lemma 3.2. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M,g,F)\) onto a Riemannian manifold \((N,g')\). Then the distribution \(D_1\) is integrable if and only if we obtain \(Q(\hat{\nabla}_X \phi Y - \hat{\nabla}_Y \phi X) = 0\) and \(T_X \phi Y = T_Y \phi X\) for \(X, Y \in \Gamma(D_1)\).

Proof. For \(X, Y \in \Gamma(D_1)\), from (2), (5), (12) and (14) we obtain
\[
F[X, Y] = \nabla_X FY - \nabla_Y FX
\]
\[
= T_X \phi Y + \hat{\nabla}_X \phi Y - T_Y \phi X - \hat{\nabla}_Y \phi X
\]
which proves assertion. □
Lemma 3.3. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then the slant distribution \(D_2\) is integrable if and only if we have
\[
P(\nabla_X \phi Y - \nabla_Y \phi X + T_X \omega Y - T_Y \omega X) = 0
\]
for \(X, Y \in \Gamma(D_2)\).

Proof. For \(X, Y \in \Gamma(D_2)\) and \(Z \in \Gamma(D_1)\), since \([X, Y] \in \Gamma(\ker \pi^*),\) from (2), (5), (6) and (12) we obtain
\[
g(F[X, Y], Z) = g(\nabla_X FY - \nabla_Y FX, Z)
= g(T_X \omega Y + \nabla_X \phi Y - T_Y \omega X - \nabla_Y \phi X, Z).
\]
Therefore, the result follows. \(\blacksquare\)

Theorem 3.3. Let \(\pi \) be a semi-slant submersion from an almost product Riemannian manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then we get
\[
\phi^2 X = \cos^2 \theta X
\]
for \(X \in \Gamma(D_2)\), where \(\theta\) denotes the semi-slant angle of \(D_2\).

Proof. For \(X \in \Gamma(D_2)\), we can write
\[
\cos \theta(X) = \frac{\|\phi X\|}{\|FX\|}.
\]
By using (12), (19) and (1) we get
\[
g(\phi^2 X, X) = g(\phi X, \phi X)
= \cos^2 \theta(X) g(FX, FX)
= \cos^2 \theta(X) g(X, X)
\]
for \(X \in \Gamma(D_2)\). Since \(g\) is Riemannian metric, from (20) we have
\[
\phi^2 X = \cos^2 \theta(X) X, \quad X \in \Gamma(D_2). \quad \blacksquare
\]

Corollary 3.1. Let \(\pi \) be a semi-slant submersion from an almost product Riemannian manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then we have
\[
g(\phi X, \phi Y) = \cos^2 \theta g(X, Y), \quad g(\omega X, \omega Y) = \sin^2 \theta g(X, Y)
\]
for \(X, Y \in \Gamma(D_2)\).

From (15) and (18) we have

Corollary 3.2. Let \(\pi \) be a semi-slant submersion from an almost product Riemannian manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then
\(\pi \) is a semi-slant submersion if and only if there exists a constant \(k \in [0, 1] \) such that
\[
B\omega = kI.
\]
If \(\pi \) is a semi-slant submersion, then \(k = \sin^2 \theta \), where \(\theta \) denotes the semi-slant angle of \(D_2 \).

Theorem 3.4. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then the distribution \(\ker\pi_* \) defines a totally geodesic foliation if and only if
\[
\omega(\hat{\nabla}_X \phi Y + T_X \omega Y) + C(T_X \phi Y + h\nabla_X \omega Y) = 0
\]
for \(X, Y \in \Gamma(\ker\pi_*) \).

Proof. For \(X, Y \in \Gamma(\ker\pi_*) \), from (2), (5), (6) and (12) we obtain
\[
\nabla_X Y = F\nabla_X FY
\]
\[
= F(T_X \phi Y + \hat{\nabla}_X \phi Y + T_X \omega Y + h\nabla_X \omega Y).
\]
Using (12) and (13), we have
\[
\nabla_X Y = BT_X \phi Y + CT_X \phi Y + \phi \hat{\nabla}_X \phi Y + \omega \hat{\nabla}_X \phi Y
\]
\[
+ \phi T_X \omega Y + \omega T_X \omega Y + Bh\nabla_X \omega Y + Ch\nabla_X \omega Y.
\]
Thus, we get
\[
\nabla_X Y \in \Gamma(\ker\pi_*) \Leftrightarrow C(T_X \phi Y + h\nabla_X \omega Y) + \omega(\hat{\nabla}_X \phi Y + T_X \omega Y) = 0.
\]

From (2), (7), (8), (12) and (13) we have

Theorem 3.5. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then the distribution \((\ker\pi_*)^\perp \) defines a totally geodesic foliation if and only if
\[
\phi(v\nabla_X BY + A_X CY) + B(A_X BY + h\nabla_X CY) = 0
\]
for \(X, Y \in \Gamma((\ker\pi_*)^\perp) \).

In a similar way we have the following.

Theorem 3.6. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then the distribution \(D_1 \) defines a totally geodesic foliation if and only if
\[
Q(\phi \hat{\nabla}_X \phi Y + BT_X \phi Y) = 0
\]
and \(CT_X \phi Y + \omega \hat{\nabla}_X \omega Y = 0 \), for \(X, Y \in \Gamma(D_1) \).

From Theorem 3.4 we have the following result.

Theorem 3.7. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then the distribution
defines a totally geodesic foliation if and only if
\[0 = P(\phi(\hat{\nabla}_X \phi Y + T_X \omega Y) + B(T_X \phi Y + h \nabla_X \omega Y)), \]
\[0 = \omega(\hat{\nabla}_X \phi Y + T_X \omega Y) + C(T_X \phi Y + h \nabla_X \omega Y) \]
for \(X, Y \in \Gamma(D_2) \).

Theorem 3.8. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). If the tensor \(\omega \) is parallel, then we have
\[T_{\phi X} \phi X = \cos^2 \theta T_X X \]
for \(X \in \Gamma(\ker \pi_*) \).

Proof. For \(X, Y \in \Gamma(\ker \pi_*) \), from Lemma 3.1(a) we get
\[T_X \phi Y = CT_X Y. \]
So that interchanging the role of \(X \) and \(Y \),
\[T_Y \phi X = CT_Y X. \]
Hence
\[T_X \phi Y = T_Y \phi X. \]
Substituting \(Y \) by \(\phi X \) and using (18),
\[T_{\phi X} \phi X = \cos^2 \theta T_X X. \]

Finally we give necessary and sufficient conditions for a semi-slant submersion to be totally geodesic. Recall that a differentiable map \(\pi \) between Riemannian manifolds \((M, g)\) and \((B, g')\) is called a totally geodesic map if \((\nabla \pi_*)(X, Y) = 0 \) for all \(X, Y \in \Gamma(TM) \).

Theorem 3.9. Let \(\pi \) be a semi-slant submersion from a locally product manifold \((M, g, F)\) onto a Riemannian manifold \((N, g')\). Then \(\pi \) is a totally geodesic map if and only if
\[0 = \omega(\hat{\nabla}_X \phi Y + T_X \omega Y) + C(T_X \phi Y + h \nabla_X \omega Y), \]
\[0 = \omega(\hat{\nabla}_X BZ + T_X CZ) + C(T_X BZ + h \nabla_X CZ) \]
for \(X, Y \in \Gamma(\ker \pi_*) \) and \(Z \in \Gamma((\ker \pi_*)^\perp) \).

Proof. For \(Z_1, Z_2 \in \Gamma((\ker \pi_*)^\perp) \), since \(\pi \) is a Riemannian submersion, from (10) we obtain
\[(\nabla \pi_*)(Z_1, Z_2) = 0. \]
For \(X, Y \in \Gamma(\ker \pi_*) \), using (2), (10) and (12) we have
\[(\nabla \pi_*)(X, Y) = -\pi_*(\nabla_X Y) = -\pi_*(F \nabla_X (\phi Y + \omega Y)). \]
From (5), (6), (12) and (13) we get
\[
(\nabla_{\pi_*})(X, Y) = -\pi_*(\phi\nabla_X Y + \omega\nabla_X Y + BT_X Y + CT_X Y + \phi T_X Y + \omega T_X Y + Bh\nabla_X Y + Ch\nabla_X Y).
\]

Thus, we have
\[
(\nabla_{\pi_*})(X, Y) = 0 \iff \omega(\nabla_X Y + T_X Y) + C(T_X Y + h\nabla_X Y) = 0.
\]

For \(X \in \Gamma(ker\pi_*)\) and \(Z \in \Gamma((ker\pi_*)^\perp)\), using again (2), (10) and (12) we obtain
\[
(\nabla_{\pi_*})(X, Z) = (\nabla_{\pi_*})(Z, X) = -\pi_*(\nabla_X Z) = -\pi_*(F\nabla_X (BZ + CZ)).
\]

From (5), (6), (12) and (13) we get
\[
(\nabla_{\pi_*})(X, Z) = -\pi_*(\phi\nabla_X BZ + \omega\nabla_X BZ + BT_X BZ + CT_X BZ + \phi T_X CZ + \omega T_X CZ + Bh\nabla_X CZ + Ch\nabla_X CZ).
\]

Thus, we obtain
\[
(\nabla_{\pi_*})(X, Z) = 0 \iff \omega(\nabla_X BZ + T_X CZ) + C(T_X BZ + h\nabla_X CZ) = 0.
\]

References

