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Abstract: Let G be an abelian group with identity e. Let R be a G-graded commutative ring with identity 1,
and M be a graded R-module. In this paper, we introduce the concept of graded Jg,-classical 2-absorbing sub-
module as a generalization of a graded classical 2-absorbing submodule. We give some results concerning
of these classes of graded submodules. A proper graded submodule C of M is called a graded J,-classical
2-absorbing submodule of M, if whenever r,, sp, t; € h(R) and x; € h(M) with rgspt;x; € C, then either 7, sx; €
C + Joe(M) or rgt;ix; € C + Jor (M) o1 sptix; € C + Jo (M), where Jo (M) is the graded Jacobson radical.
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1 Introduction and preliminaries

Throughout this paper, all rings are commutative with identity and all modules are unitary. The concept of
graded prime submodules was introduced and studied by many authors, see, for example, [1-4]. The concept
of graded classical prime submodules as a generalization of graded prime submodules was introduced
by Darani and Motmaen in [5,6] and studied in [7,8]. The concept of graded Jg,-classical prime submodule
as a generalization of graded classical prime submodules was introduced and studied by Al-Zoubi and
Alghueiri in [9]. The concept of graded 2-absorbing ideals as a generalization of graded prime ideals was
introduced and studied by Al-Zoubi et al. and other authors, see [10,11]. The concept of graded 2-absorbing
submodules as a generalization of graded prime submodules was introduced by Al-Zoubi and Abu-Dawwas
in [12] and studied in [13,14]. The concept of graded classical 2-absorbing submodules as a generalization of
graded 2-absorbing submodules was introduced and studied by Al-Zoubi and Al-Azaizeh in [6].

Here, we introduce the concept of graded J,-classical 2-absorbing submodule as a new generalization
of a graded classical 2-absorbing submodule, on one hand, and a generalization of a graded J,-classical
prime submodule, on the other hand. We investigate some basic properties of these classes of graded
modules. For example, we give a characterization of graded Jg-classical 2-absorbing submodule (see
Theorem 2.10). We also study the behaviour of graded Jg-classical 2-absorbing submodule under graded
homomorphisms (see Theorem 2.11) and under localization (see Theorem 2.13).
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First, we recall some basic properties of graded rings and modules, which will be used in the sequel.
We refer to [15-18] for these basic properties and more information on graded rings and modules.

Let G be an abelian multiplicative group with identity e. By a G-graded ring, we mean a ring R together
with direct sum decomposition (as abelian group) R = @R With the property that RgRy < Rgp for all
g, h € G. The non-zero elements of Ry, are said to be homogeneous of degree h, and all the homogeneous
elements are denoted by h(R), i.e., h(R) = UpcgRy. If t € R, thent can be written uniquely as deGtg, where f,
is called a homogeneous component of t in Rg. Let R = @4.cRg be a G-graded ring. An ideal P of R is said to
be a graded ideal if P = @gec(P N Ry) = BgecPy (see [18]).

Let R be a G-graded ring and M be an R-module. Then, M is called a G-graded R-module if there exists
a family of additive subgroups {Mglscc of M, such that, M = @gccM; and R;My < Mg, for all g, h € G.
Similarly, if an element of M belongs to UgegMg = h(M), then it is called a homogeneous. Let R be a G-
graded ring and M be a graded R-module. A submodule C of M is said to be a graded submodule of M if
C = ®4c6(C N Mg) = D4e6C;. In this case, Cg is called the g-component of C (see [18]).

2 Results

Definition 2.1. Let R be a G-graded ring and M be a graded R-module. A proper graded submodule C of M is
said to be a graded J,-classical 2-absorbing submodule of M if whenever rg, sp, t; € h(R) and x; € h(M) with
rgsptix; € C, then either rgspX; € C + Jor (M) o1 rgtix; € C + Jor(M) or sptix; € C + Jor(M).

Recall from [8] that a proper graded submodule C of a graded R-module M is said to be a graded
classical prime submodule of M if whenever rgspx; € C, whererg, sy € h(R) and x; € h(M), then eitherrgx; € C
or spx; € C.

It is clear that every graded classical prime submodule is a graded Jg,-classical 2-absorbing submodule.
The next example shows that the converse is not true in general.

Example 2.2. Let G = Z, and R = Z. Then, R is a G-graded ring with Ry = Z and R, = {0}. Let M = Zg x Z.
Then, M is a graded R-module with My = Zg x Z and M; = {(0, 0)}. Now, consider the graded submodule
C = (&) x Z of M, then C is not a graded classical prime submodule since 2 - 2 -(1,1) € C = (4) x Z, where
2eRypand(1,1) € My, but2-(1,1) ¢ C = (4) x Z. However, an easy computation shows that C is a graded
Jer-classical 2-absorbing submodule of M.

Recall from [9] that a proper graded submodule C of a graded R-module M is said to be a graded
Jor-classical prime submodule of M, if whenever rgspx; € C, where rg, s, € h(R) and x; € h(M), then either
reXi € C + Jo (M) or spx; € C + Jgr (M).

It is clear that every graded J,-classical prime submodule is a graded Jg-classical 2-absorbing sub-
module. The next example shows that the converse is not true in general.

Example 2.3. Let G = Z, and R = Z. Then, R is a G-graded ring with Ro = Z and R, = {0}. Let M = Z x Z.
Then, M is a G-graded R-module with My = Z x Z and M; = {0}. Now, consider the graded submodule
C = 10Z x {0} of M, then C is not a graded J,-classical prime submodule since 2 -5 -(1, 0) € C = 10Z x {0},
where2,5 € Rpand(1, 0) € My, but2 -(1, 0) ¢ 10Z x {0} + Jox(M)and5 -(1, 0) ¢ 10Z x {0} + Jg;(M). However,
an easy computation shows that C is a graded Jg,-classical 2-absorbing submodule of M.

Recall from [6] that a proper graded submodule C of a graded R-module M is said to be a graded
classical 2-absorbing submodule of M if whenever rg, sy, t; € h(R) and x; € h(M) with rgspt;x; € C, then either
reSnXj € C or rgt;x; € C or sptix; € C.

It is clear that every graded classical 2-absorbing submodule is a graded Jg,-classical 2-absorbing sub-
module. The following example shows that the converse is not true in general.
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Example 2.4. Let G = Z, and R = Z. Then, R is a G-graded ring with Ry = Z and R, = {0}. Let M = Z3,.
Then, M is a graded R-module with M, = Z5, and M; = {0}. Now, consider the graded submodule C = (16)
of M. Then, C is not a graded classical 2-absorbing submodule of M since2 -2 -2 - 2 ¢ (16), where 2 € Ry and
2 € My, but2-2-2 ¢ (16). However, an easy computation shows that C is a graded Jor-classical 2-absorbing
submodule of M.

Remark 2.5. Let R be a G-graded ring and M be a graded R-module.

(i) If Jo(M) = 0, then every graded Jg,-classical 2-absorbing submodule of M is a graded classical 2-absorb-
ing submodule of M.

(ii) If C is a graded J,-classical 2-absorbing submodule of M with J,,(M) < C, then C is a graded classical
2-absorbing submodule of M.

Theorem 2.6. Let R be a G-graded ring, M be a graded R-module and C, U be two graded submodules of M
such that C < U. If C is a graded Jg-classical 2-absorbing submodule of M and Jg(M) € Jor(U), then C is
a graded Jg-classical 2-absorbing submodule of U.

Proof. Let rg, sp, t; € h(R) and u; € U n h(M) with rgspt;u; € C. Since C is a graded J,,-classical 2-absorbing
submodule of M, we get either rgspu; € C + Jg (M) or rgtiuj € C + Jor(M) or sptiuj € C + Jo-(M). Hence, either
rgSplj € C + Jor(U) or rgtiuj € C + Jor(U) or sptiuj € C + Jo(U) since Jg (M) € Jor(U). Hence, C is a graded
Jor-classical 2-absorbing submodule of U. O

Recall from [10] that a proper graded ideal I of a G-graded ring R is said to be a graded 2-absorbing ideal
if whenever r,, sp, t; € h(R) with rgspt; € I, which implies either r,s, € I or rgt; € I or spt; € I.

Theorem 2.7. Let R be a G-graded ring, M a graded R-module and C a proper graded submodule of M.
If (C + Jg&(M) g X)) is a graded 2-absorbing ideal of R for each x; € h(M), then C is a graded Jg-classical
2-absorbing submodule of M.

Proof. Let g, sp, t; € h(R) and x; € h(M) such that rgsptix; € C. This yields that rgspti € (C + Jor(M) g X)).
Then, either rgsp € (C + Jor(M) :g X;) or 1gt; € (C + Jgr (M) g X;) 01 Spt; € (C + Jgr (M) g Xj) as (C + Jgr (M) R X))
is a graded 2-absorbing ideal of R. Thus, eitherryspx; € C + Jo (M) orrgtix; € C + Jor (M) o1 Sptix; € C + Jor(M).
Therefore, C is a graded Jg-classical 2-absorbing submodule of M. |

Theorem 2.8. Let R be a G-graded ring, M a graded R-module, C a graded g -classical 2-absorbing sub-
module of M and K = ®;cK; a graded ideal of R. Then, for each ag, by € h(R), x; € h(M) and i € G with
agbpKix; < C and agbpx; ¢ C + Jo:(M), either agKix; < C + Jo (M) or bpKix; € C + Jor(M).

Proof. Let a,, by, € h(R), x; € h(M) and i € G such that a,b,K;x; < C and agbpx; ¢ C + Jo(M). Assume that
agKix; ¢ C + Jo(M) and bpK;x; ¢ C + Jo-(M). Then, there exist k;, k{ € K; such that agkixj ¢ C + Jor(M) and
bhk,-’x,- ¢ C+ Jg(M). By agbpkix; € C, agkix; ¢ C + Jo(M) and agbpx; ¢ C + Jo&r(M), we get bpkix; € C + Jor (M)
as C is a graded J,-classical 2-absorbing submodule of M. Similarly, by agbyk{x; € C, we get agk/x; €
C + Jo(M). By k; + ki € Ki, we get agbn(k; + k{)x; € C. Hence, either ag(k; + k{)x; € C + Jo(M) or bu(k; + k{)x; €
C + Ju(M) as C is a graded Jg-classical 2-absorbing submodule of M. If ag(k; + ki’)xi € C + Jg&r (M), then
agkx; € C + Jo(M) since agk{x; € C + Jo&-(M), a contradiction. Also, if bu(k; + k{)X; € C + Jo (M), we get bk x; €
C + Jor(M) since bpk;x; € C + Jor(M), a contradiction. Therefore, either a; Kix; < C + Jg (M) or bpKix; < C + Jg (M).

O

Theorem 2.9. Let R be a G-graded ring, M a graded R-module, C a graded Jg-classical 2-absorbing sub-
module of M and L = @pecLn, K = ®@iccK; be two graded ideals of R. Then, for each ag € h(R), x; € h(M) and h,
i€ GwithagLyKix; < C, either agLpX; € C + Jo(M) or agKix; € C + Jgr(M) or LyKix; € C + Jor(M).
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Proof. Letag € h(R), x; € h(M) and h, i € G such thatag Ly Kix; < C, agLnxj € C + Jg& (M) and agKix; ¢ C + Jor(M).
Then, there exist I, € L, and k{ € K; such that aglyx; ¢ C + Jo;(M) and agk{x; ¢ C + Jo&;(M). We want to show
that LyK;x; € C + Jo(M). Let Iy € Ly and k; € K;. Hence, aglyKix; € C, aglyx; ¢ C + Jo (M) and agKixj ¢ C + Jgr (M)
implies that [;Kix; € C + Jg(M) by Theorem 2.8. Similarly, agk{Lyx; € C, agkix; ¢ C + Jo(M) and agLpx; ¢
C + Jo-(M) implies that k,»’th,- € C + Jo(M) by Theorem 2.8. Since I + I e Ly and k; + k{ € K;, we get
ag(ln + Ip) (ki + k{)x; € C. This yields that either ag(ly + l))X; € C + Jo(M) or ag(k; + ki)x; € C + Jo(M) or
(I + L) (ki + kj)xj € C + Jo(M) as C is a graded J,-classical 2-absorbing submodule of M. If a(l, + I;)x; €
C + Jo(M), then aglpx; ¢ C + Jo(M) since aglyx; ¢ C + Jo(M). Thus, aglpKix; € C, aglyx; ¢ C + Jo(M) and
agKix; ¢ C + Jor(M) imply that I Kix; € C + Jg&(M) by Theorem 2.8, so Il kixj € C + Jo(M). Similarly, if
ag(ki + k{)x; € C + Jo(M), then agkix; ¢ C + Jor(M) since agk{x; ¢ C + Jo:(M). Thus, agkiLyx;j € C, agkixj ¢ C +
Jor(M) and agLyx; ¢ C + Jo(M) imply that kiLpx; < C + Jo(M) by Theorem 2.8, so I kixj € C + Jo(M). Also, if
(I + L) (ki + k)x; € C + Jor(M), then lykixj € C + Jor(M) since LiKix; € C + Jg(M) and ki{Lypx; € C + Jgr(M).
Thus, LyKix; € C + Jor(M). O

The next theorem gives a characterization of graded Jg,-classical 2-absorbing submodules.

Theorem 2.10. Let R be a G-graded ring, M a graded R-module, C a proper graded submodule of M and

U= @®gecl;, L = ®regLnK = ®iccK; be graded ideals of R. Then, the following statements are equivalent:

(i) Cis a graded Jg-classical 2-absorbing submodule of M.

(ii) If whenever xj € h(M) and g, h,i € G with U; L, K;x; < C, implies either UysLpx; < C + Jg& (M) or UgKix; <
C+ Ja(M) or LpKix; € C + Jgr(M).

Proof. (i) = (ii) Let g, h,i € G and x; € h(M) such thatU, LyK;x; € C and Ug Ly X; ¢ C + Jg (M). For each k; € K;,
either k;Ugx; € C + Jor(M) or kiLpx; € C + Jg (M) by Theorem 2.9. If k;Uy x; € C + Jor(M), for all k; € K; we are
done. Similarly, if k;Lpx; € C + Jg(M), for all k; € K;, we are done. Assume that there exist k;, k{ € K; such
thatk; U X; ¢ C + Jo(M)and k{ Lyx; ¢ C + Jgr(M), which yields thatk;Lpx; € C + Jor(M) and k{ UgX; € C + Jo(M).
Sincek; + ki € Ki, we get(k; + k{) UgLpx; < N. Then, either (k; + k{) U X; € C + Jo(M) or(k; + k) Lpx; € C + Jgr(M)
by Theorem 2.9. If (k; + k/) Usxj € C + Jgr(M), we get kiU x5 € C + Jo (M), which is a contradiction. Similarly, if
(ki + ki,)LhXj € C + Jg (M), we get a contradiction. Therefore, either U; Kix; €C + Jor (M) or LpKix; € C + Jg (M).

(ii) > (i) Let r, s, t € h(R) and x € h(M) with rstx € C. Let U, L and K be ideals of R generated by the
elements r, s, t, respectively, that is, U =rR, L = sR and K = tR. So, U = @gcrRg, L = @gegSRg and K =
@gcGtR, are graded ideals of R. Moreover, for every g € G, U; = 1Rg, Ly = SR; and K, = tR,. In particular,
U. = 1Re, Le = SR, and K, = tR.. Now, by our assumption, U,L.K.x < C. Hence, either U;L.x < C + Jg& (M) or
UeKex € C + Jg (M) or LeKex € C + Jor(M). So, either rsx = r1slx € rR.SRex = UpLex € C + Jor(M) or rix =
rltlx € rRetR.x = UoKex € C + Jgr (M) o1 stx = S1t1x € SRetR.x = LeK.x € C + Jo-(M). Therefore, C is a graded
Jor-classical 2-absorbing submodule of M. O

Recall from [12] that a graded zero-divisor on a graded R-module M is an element r; € h(R) for which
there exists x; € h(M), such that, x; # 0 butryx; = 0. The set of all graded zero-divisors on M is denoted by
G-Zdvg(M).

The following result studies the behaviour of graded Jg-classical 2-absorbing submodules under
localization.

Theorem 2.11. Let R be a G-graded ring, M a graded R-module and S < h(R) be a multiplicatively closed

subset of R.

(i) If C is a graded Jq-classical 2-absorbing submodule of M with (C :xg M) N S = &, then S7IC is a graded
Jer-classical 2-absorbing submodule of S M.

(it) IfS7IC is a graded Jg-classical 2-absorbing submodule of S™'M with S n G-Zdvg(M/(C + Jg&(M))) = @, then
C is a graded Jq-classical 2-absorbing submodule of M.
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Proof. (i) Since (C:x M) NS =, we get S7IC as a proper graded submodule of S'M. Assume that

Ao, Ao, Ags X, a X .
faln 557 ¢ G-1C, where 28, %2 5 ¢ p(S-IR) and =% € h(S~'M). Then, there exists by, € S such that
Shy Shy Sh3 Shy Shy~ Shy  Sh3 Shy, 4

by,agag ag x,, € C. Since C is a graded Jg,-classical 2-absorbing submodule of M, we get by, ag ag,xg, € C +

. dgy Agy Xg;, _ bnygagXg,
Jor(M) or by, agagxg, € C + Jg(M) ot by, ag,ag xg, € C + Jo(M). It follows that either oy Sty Sy DreSmomSie €

STIC + Jp(SM) or falnXe _ Dulaletu o gae g (gpf) op fmiste | Ddntslu o gac (g,

Shy Shy Shy by ShySh3Shy Shy Sh3 Shy by ShyShzShy,
Thus, S7IC is a graded Jgr-classical 2-absorbing submodule of S-M.
9219g,%g3%e, _ g dgp A3 Xeu

(ii) Assume that ag ag ag xg, € C, where ag, ag,, ag, € h(R) and xg, € h(M). Hence, . =L L

€ S7IC. Thus, 22278 ¢ S7IC 4 J, (SIM) or 22278 € STIC 4 Joo (STIM) or 22825 € §71C 4], (S M) as S'C is

le 1e 1e

a graded Jg,- c1a551ca1 2-absorbing submodule of S- 1M If = agl 71 Xlg“ 1C + ]g,(S lM ), then there exists s, € S

such that syagagxg, € C + Jo(M). Hence, agagx,, € C+]gr(M) since SN G-Zdvg(M/(C + Jo(M))) = &

Similarly, we can show that if%%% € S7IC + Jo(S7'M), then spagag,xg, € C + Jg(M). Also, if%%% €

SIC + ]gT(S‘lM), then ag,ag xg, € C + Jo(M). Thus, C is a graded Jg-classical 2-absorbing submodule of M.
O

Let M and S be two graded R-modules. A homomorphism of graded R-modules f: M — S is a homo-
morphism of R-modules that satisfy f(Mg) < S, for every g € G, (see [18]).

Recall from [19] that a proper graded submodule C of a graded R-module M is said to be a gr-small
submodule of M (for short C «; M), if for every proper graded submodule K of M, we have C + K # M.

Theorem 2.12. [20, Theorem 2.12] Let R be a G-graded ring and M, S be the graded R-modules.
() If f: M — S is a graded homomorphism, then f(Jor(M)) < Jgr(S).
(i) If f: M — S is a graded epimorphism and ker(f) <g M, then f(Jg(M)) = J&(S).

Theorem 2.13. Let R be a G-graded ring, M and S be two graded R-modules and f: M — S be a graded

epimorphism.

(i) IfC is a graded Jg-classical 2-absorbing submodule of M with ker(f) < C, then f(C) is a graded Jg-clas-
sical 2-absorbing submodule of S.

(i) If C' is a graded Jg-classical 2-absorbing submodule of S with ker(f) <g M, then f(C') is a graded
Jer-classical 2-absorbing submodule of M.

Proof. (i) Let ag, ay, a; € h(R) and s; € h(S) with agaya;s; € f(C). Then, there exists x; € h(M) such that
f(x)) = s;as f is a graded epimorphism. So, ag aa;f (x;) = f(agana;x;) € f(C). Hence, there exists by € C n h(M)
such that f(agana;x;) = f(by). It follows that agana;x; — by € ker(f) < C, thus agana;x; € C. Since C is a
graded Jg-classical 2-absorbing submodule of M, we get either aganx; € C + Jo-(M) or aga;x; € C + Jg (M)
or apaixj € C + Jo(M). By Theorem 2.12(i), we get either agays; € f(C) + Jg(S) or aga;s; € f(C) + Jg(S) or
ana;s;j € f(C) + Jgr(S). Therefore, f(C) is a graded Jg-classical 2-absorbing submodule of S.

(i) Let dg, dp, d; € h(R) and b; € h(M) with dydxd;b; € f(C"). So, dedndif(b;) € C'. Since C' is a graded
Jer-classical 2-absorbing submodule of S, we get either dyduf(b;) = f(dgdnbj) € C' + Jg(S) or dgdif (by) =
f(ded;b;) € C' + Jgr(S) or dndif (bj) = f(dnd;bj) € C' + J(S). Since ker(f) <g M, by Theorem 2.12(ii), we have
fUgr(M)) = Jgr(S). 1t follows that either dgdybj € f1(C') + Jgr(M) or dgdib; € f1(C') + Jg-(M) or dpd;b; €
fuch + Jer(M). Therefore, f1(C") is a graded Jor-classical 2-absorbing submodule of M. (|
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