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Abstract: Let G be an abelian group with identity e. Let R be a G-graded commutative ring with identity 1,
and M be a graded R-module. In this paper, we introduce the concept of graded Jgr-classical 2-absorbing sub-
module as a generalization of a graded classical 2-absorbing submodule. We give some results concerning
of these classes of graded submodules. A proper graded submodule C of M is called a graded Jgr-classical
2-absorbing submodule of M , if whenever ∈ ( )r s t h R, ,g h i and ∈ ( )x h Mj with ∈r s t x Cg h i j , then either ∈r s xg h j

+ ( )C J Mgr or ∈ + ( )r t x C J Mg i j gr or ∈ + ( )s t x C J M ,h i j gr where ( )J Mgr is the graded Jacobson radical.
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1 Introduction and preliminaries

Throughout this paper, all rings are commutative with identity and all modules are unitary. The concept of
graded prime submodules was introduced and studied by many authors, see, for example, [1–4]. The concept
of graded classical prime submodules as a generalization of graded prime submodules was introduced
by Darani and Motmaen in [5,6] and studied in [7,8]. The concept of graded Jgr-classical prime submodule
as a generalization of graded classical prime submodules was introduced and studied by Al-Zoubi and
Alghueiri in [9]. The concept of graded 2-absorbing ideals as a generalization of graded prime ideals was
introduced and studied by Al-Zoubi et al. and other authors, see [10,11]. The concept of graded 2-absorbing
submodules as a generalization of graded prime submodules was introduced by Al-Zoubi and Abu-Dawwas
in [12] and studied in [13,14]. The concept of graded classical 2-absorbing submodules as a generalization of
graded 2-absorbing submodules was introduced and studied by Al-Zoubi and Al-Azaizeh in [6].

Here, we introduce the concept of graded Jgr-classical 2-absorbing submodule as a new generalization
of a graded classical 2-absorbing submodule, on one hand, and a generalization of a graded Jgr-classical
prime submodule, on the other hand. We investigate some basic properties of these classes of graded
modules. For example, we give a characterization of graded Jgr-classical 2-absorbing submodule (see
Theorem 2.10). We also study the behaviour of graded Jgr-classical 2-absorbing submodule under graded
homomorphisms (see Theorem 2.11) and under localization (see Theorem 2.13).
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First, we recall some basic properties of graded rings and modules, which will be used in the sequel.
We refer to [15–18] for these basic properties and more information on graded rings and modules.

Let G be an abelian multiplicative group with identity e. By a G-graded ring, we mean a ring R together
with direct sum decomposition (as abelian group) ⊕= ∈R Rg G g with the property that ⊆R R Rg h gh for all
g , ∈h G. The non-zero elements of Rh are said to be homogeneous of degree h, and all the homogeneous
elements are denoted by ( )h R , i.e., ∪( ) = ∈h R Rh G h. If ∈t R, then t can be written uniquely as∑

∈
tg G g, where tg

is called a homogeneous component of t in Rg. Let ⊕= ∈R Rg G g be a G-graded ring. An ideal P of R is said to
be a graded ideal if ⊕ ⊕= ( ∩ ) ≔∈ ∈P P R Pg G g g G g (see [18]).

Let R be a G-graded ring and M be an R-module. Then, M is called a G-graded R-module if there exists
a family of additive subgroups { } ∈Mg g G of M , such that, ⊕= ∈M Mg G g and ⊆R M Mg h gh for all ∈g h G, .
Similarly, if an element of M belongs to ∪ = ( )∈ M h Mg G g , then it is called a homogeneous. Let R be a G-
graded ring and M be a graded R-module. A submodule C of M is said to be a graded submodule of M if

⊕ ⊕= ( ∩ ) ≔∈ ∈C C M Cg G g g G g . In this case, Cg is called the g-component of C (see [18]).

2 Results

Definition 2.1. Let R be a G-graded ring and M be a graded R-module. A proper graded submoduleC of M is
said to be a graded Jgr-classical 2-absorbing submodule of M if whenever rg, sh, ∈ ( )t h Ri and ∈ ( )x h Mj with

∈r s t x Cg h i j , then either ∈ + ( )r s x C J Mg h j gr or ∈ + ( )r t x C J Mg i j gr or ∈ + ( )s t x C J Mh i j gr .

Recall from [8] that a proper graded submodule C of a graded R-module M is said to be a graded
classical prime submodule of M if whenever ∈r s x Cg h i , where rg, ∈ ( )s h Rh and ∈ ( )x h Mi , then either ∈r x Cg i

or ∈s x Ch i .
It is clear that every graded classical prime submodule is a graded Jgr-classical 2-absorbing submodule.

The next example shows that the converse is not true in general.

Example 2.2. Let �=G 2 and �=R . Then, R is a G-graded ring with �=R0 and = { }R 01 . Let � �= ×M 8 .
Then, M is a graded R-module with � �= ×M0 8 and = {( )}M 0, 01 . Now, consider the graded submodule

�= ⟨ ⟩ ×C 4̄ of M , then C is not a graded classical prime submodule since �⋅ ⋅( ) ∈ = ⟨ ⟩ ×C2 2 1̄, 1 4̄ , where

∈ R2 0 and ( ) ∈ M1̄, 1 0, but �⋅( ) ∉ = ⟨ ⟩ ×C2 1̄, 1 4̄ . However, an easy computation shows that C is a graded
Jgr-classical 2-absorbing submodule of M .

Recall from [9] that a proper graded submodule C of a graded R-module M is said to be a graded
Jgr-classical prime submodule of M , if whenever ∈r s x Cg h i , where rg, ∈ ( )s h Rh and ∈ ( )x h Mi , then either

∈ + ( )r x C J Mg i gr or ∈ + ( )s x C J Mh i gr .
It is clear that every graded Jgr-classical prime submodule is a graded Jgr-classical 2-absorbing sub-

module. The next example shows that the converse is not true in general.

Example 2.3. Let �=G 2 and �=R . Then, R is a G-graded ring with �=R0 and = { }R 01 . Let � �= ×M .
Then, M is a G-graded R-module with � �= ×M0 and = { }M 01 . Now, consider the graded submodule

�= × { }C 10 0 of M , then C is not a graded Jgr-classical prime submodule since �⋅ ⋅( ) ∈ = × { }C2 5 1, 0 10 0 ,
where 2, ∈ R5 0 and( ) ∈ M1, 0 0, but �⋅( ) ∉ × { } + ( )J M2 1, 0 10 0 gr and �⋅( ) ∉ × { } + ( )J M5 1, 0 10 0 gr .However,
an easy computation shows thatC is a graded Jgr-classical 2-absorbing submodule of M .

Recall from [6] that a proper graded submodule C of a graded R-module M is said to be a graded
classical 2-absorbing submodule of M if whenever rg, sh, ∈ ( )t h Ri and ∈ ( )x h Mj with ∈r s t x Cg h i j , then either

∈r s x Cg h j or ∈r t x Cg i j or ∈s t x Ch i j .
It is clear that every graded classical 2-absorbing submodule is a graded Jgr-classical 2-absorbing sub-

module. The following example shows that the converse is not true in general.
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Example 2.4. Let �=G 2 and �=R . Then, R is a G-graded ring with �=R0 and = { }R 01 . Let �=M 32.
Then, M is a graded R-module with �=M0 32 and = { }M 01 . Now, consider the graded submodule = ( )C 16̄
of M . Then,C is not a graded classical 2-absorbing submodule of M since ⋅ ⋅ ⋅ ∈ ( )2 2 2 2̄ 16̄ , where ∈ R2 0 and

∈ M2̄ 0, but ⋅ ⋅ ∉ ( )2 2 2̄ 16̄ . However, an easy computation shows that C is a graded Jgr-classical 2-absorbing
submodule of M .

Remark 2.5. Let R be a G-graded ring and M be a graded R-module.
(i) If ( ) =J M 0gr , then every graded Jgr-classical 2-absorbing submodule of M is a graded classical 2-absorb-

ing submodule of M .
(ii) If C is a graded Jgr-classical 2-absorbing submodule of M with ( ) ⊆J M Cgr , then C is a graded classical

2-absorbing submodule of M .

Theorem 2.6. Let R be a G-graded ring, M be a graded R-module and C, U be two graded submodules of M
such that ⊊C U . If C is a graded Jgr-classical 2-absorbing submodule of M and ( ) ⊆ ( )J M J Ugr gr , then C is
a graded Jgr-classical 2-absorbing submodule of U .

Proof. Let ∈ ( )r s t h R, ,g h i and ∈ ∩ ( )u U h Mj with ∈r s t u Cg h i j . Since C is a graded Jgr-classical 2-absorbing
submodule of M, we get either ∈ + ( )r s u C J Mg h j gr or ∈ + ( )r t u C J Mg i j gr or ∈ + ( )s t u C J Mh i j gr . Hence, either

∈ + ( )r s u C J Ug h j gr or ∈ + ( )r t u C J Ug i j gr or ∈ + ( )s t u C J Uh i j gr since ( ) ⊆ ( )J M J Ugr gr . Hence, C is a graded
Jgr-classical 2-absorbing submodule of U . □

Recall from [10] that a proper graded ideal I of a G-graded ring R is said to be a graded 2-absorbing ideal
if whenever ∈ ( )r s t h R, ,g h i with ∈r s t Ig h i , which implies either ∈r s Ig h or ∈r t Ig i or ∈s t Ih i .

Theorem 2.7. Let R be a G-graded ring, M a graded R-module and C a proper graded submodule of M .
If ( + ( ) )C J M x:gr R j is a graded 2-absorbing ideal of R for each ∈ ( )x h Mj , then C is a graded Jgr-classical
2-absorbing submodule of M .

Proof. Let ∈ ( )r s t h R, ,g h i and ∈ ( )x h Mj such that ∈r s t x Cg h i j . This yields that ∈ ( + ( ) )r s t C J M x:g h i gr R j .
Then, either ∈ ( + ( ) )r s C J M x:g h gr R j or ∈ ( + ( ) )r t C J M x:g i gr R j or ∈ ( + ( ) )s t C J M x:h i gr R j as ( + ( ) )C J M x:gr R j

is a graded 2-absorbing ideal of R. Thus, either ∈ + ( )r s x C J Mg h j gr or ∈ + ( )r t x C J Mg i j gr or ∈ + ( )s t x C J Mh i j gr .
Therefore, C is a graded Jgr-classical 2-absorbing submodule of M . □

Theorem 2.8. Let R be a G-graded ring, M a graded R-module, C a graded Jgr-classical 2-absorbing sub-
module of M and ⊕= ∈K Ki G i a graded ideal of R. Then, for each ag, ∈ ( )b h Rh , ∈ ( )x h Mj and ∈i G with

⊆a b K x Cg h i j and ∉ + ( )a b x C J Mg h j gr , either ⊆ + ( )a K x C J Mg i j gr or ⊆ + ( )b K x C J Mh i j gr .

Proof. Let ∈ ( )a b h R,g h , ∈ ( )x h Mj and ∈i G such that ⊆a b K x Cg h i j and ∉ + ( )a b x C J Mg h j gr . Assume that
⊈ + ( )a K x C J Mg i j gr and ⊈ + ( )b K x C J Mh i j gr . Then, there exist ki, ′ ∈k Ki i such that ∉ + ( )a k x C J Mg i j gr and

′ ∉ + ( )b k x C J Mh i j gr . By ∈a b k x Cg h i j , ∉ + ( )a k x C J Mg i j gr and ∉ + ( )a b x C J M ,g h j gr we get ∈ + ( )b k x C J Mh i j gr

as C is a graded Jgr-classical 2-absorbing submodule of M . Similarly, by ′ ∈a b k x C,g h i j we get ′ ∈a k xg i j

+ ( )C J Mgr . By + ′ ∈k k Ki i i, we get ( + ′) ∈a b k k x Cg h i i j . Hence, either ( + ′) ∈ + ( )a k k x C J Mg i i j gr or ( + ′) ∈b k k xh i i j

+ ( )C J Mgr as C is a graded Jgr-classical 2-absorbing submodule of M . If ( + ′) ∈ + ( )a k k x C J M ,g i i j gr then

∈ + ( )a k x C J Mg i j gr since ′ ∈ + ( )a k x C J M ,g i j gr a contradiction. Also, if ( + ′) ∈ + ( )b k k x C J M ,h i i j gr we get ′ ∈b k xh i j

+ ( )C J Mgr since ∈ + ( )b k x C J Mh i j gr , a contradiction. Therefore, either ⊆ + ( )a K x C J Mg i j gr or ⊆ + ( )b K x C J Mh i j gr .
□

Theorem 2.9. Let R be a G-graded ring, M a graded R-module, C a graded Jgr-classical 2-absorbing sub-
module of M and ⊕= ∈L Lh G h, ⊕= ∈K Ki G i be two graded ideals of R. Then, for each ∈ ( )a h Rg , ∈ ( )x h Mj and h,

∈i G with ⊆a L K x Cg h i j , either ⊆ + ( )a L x C J Mg h j gr or ⊆ + ( )a K x C J Mg i j gr or ⊆ + ( )L K x C J Mh i j gr .
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Proof. Let ∈ ( )a h Rg , ∈ ( )x h Mj and ∈h i G, such that ⊆a L K x Cg h i j , ⊈ + ( )a L x C J Mg h j gr and ⊈ + ( )a K x C J Mg i j gr .
Then, there exist ′ ∈l Lh h and ′ ∈k Ki i such that ′ ∉ + ( )a l x C J Mg h j gr and ′ ∉ + ( )a k x C J Mg i j gr . We want to show

that ⊆ + ( )L K x C J Mh i j gr . Let ∈l Lh h and ∈k Ki i. Hence, ′ ⊆a l K x Cg h i j , ′ ∉ + ( )a l x C J Mg h j gr and ⊈ + ( )a K x C J Mg i j gr

implies that ′ ⊆ + ( )l K x C J Mh i j gr by Theorem 2.8. Similarly, ′ ⊆a k L x Cg i h j , ′ ∉ + ( )a k x C J Mg i j gr and ⊈a L xg h j

+ ( )C J Mgr implies that ′ ⊆ + ( )k L x C J Mi h j gr by Theorem 2.8. Since + ′ ∈l l Lh h h and + ′ ∈k k Ki i i, we get

( + ′)( + ′) ∈a l l k k x Cg h h i i j . This yields that either ( + ′) ∈ + ( )a l l x C J Mg h h j gr or ( + ′) ∈ + ( )a k k x C J Mg i i j gr or

( + ′)( + ′) ∈ + ( )l l k k x C J Mh h i i j gr as C is a graded Jgr-classical 2-absorbing submodule of M . If ( + ′) ∈a l l xg h h j

+ ( )C J Mgr , then ∉ + ( )a l x C J Mg h j gr since ′ ∉ + ( )a l x C J Mg h j gr . Thus, ⊆a l K x Cg h i j , ∉ + ( )a l x C J Mg h j gr and
⊈ + ( )a K x C J Mg i j gr imply that ⊆ + ( )l K x C J Mh i j gr by Theorem 2.8, so ∈ + ( )l k x C J Mh i j gr . Similarly, if

( + ′) ∈ + ( )a k k x C J Mg i i j gr , then ∉ + ( )a k x C J Mg i j gr since ′ ∉ + ( )a k x C J Mg i j gr . Thus, ⊆a k L x Cg i h j , ∉ +a k x Cg i j

( )J Mgr and ⊈ + ( )a L x C J Mg h j gr imply that ⊆ + ( )k L x C J Mi h j gr by Theorem 2.8, so ∈ + ( )l k x C J Mh i j gr . Also, if

( + ′)( + ′) ∈ + ( )l l k k x C J Mh h i i j gr , then ∈ + ( )l k x C J Mh i j gr since ′ ⊆ + ( )l K x C J Mh i j gr and ′ ⊆ + ( )k L x C J Mi h j gr .
Thus, ⊆ + ( )L K x C J Mh i j gr . □

The next theorem gives a characterization of graded Jgr-classical 2-absorbing submodules.

Theorem 2.10. Let R be a G-graded ring, M a graded R-module, C a proper graded submodule of M and
⊕= ∈U Ug G g , ⊕ ⊕= =∈ ∈L L K Kh G h i G i be graded ideals of R. Then, the following statements are equivalent:

(i) C is a graded Jgr-classical 2-absorbing submodule of M .

(ii) If whenever ∈ ( )x h Mj and ∈g h i G, , with ⊆U L K x Cg h i j , implies either ⊆ + ( )U L x C J Mg h j gr or ⊆U K xg i j

+ ( )C J Mgr or ⊆ + ( )L K x C J Mh i j gr .

Proof. ( ) ⇒ ( )i ii Let ∈g h i G, , and ∈ ( )x h Mj such that ⊆U L K x Cg h i j and ⊈ + ( )U L x C J Mg h j gr . For each ∈k Ki i,
either ⊆ + ( )k U x C J Mi g j gr or ⊆ + ( )k L x C J Mi h j gr by Theorem 2.9. If ⊆ + ( )k U x C J Mi g j gr , for all ∈k Ki i we are

done. Similarly, if ⊆ + ( )k L x C J Mi h j gr , for all ∈k Ki i, we are done. Assume that there exist ki, ′ ∈k Ki i such

that ⊈ + ( )k U x C J Mi g j gr and ′ ⊈ + ( )k L x C J Mi h j gr ,whichyields that ⊆ + ( )k L x C J Mi h j gr and ′ ⊆ + ( )k U x C J Mi g j gr .

Since + ′ ∈k k Ki i i,weget( + ′) ⊆k k U L x Ni i g h j . Then, either( + ′) ⊆ + ( )k k U x C J Mi i g j gr or( + ′) ⊆ + ( )k k L x C J Mi i h j gr

by Theorem 2.9. If ( + ′) ⊆ + ( )k k U x C J Mi i g j gr , we get ⊆ + ( )k U x C J Mi g j gr , which is a contradiction. Similarly, if

( + ′) ⊆ + ( )k k L x C J M ,i i h j gr we get a contradiction. Therefore, either ⊆U K xg i j + ( )C J Mgr or ⊆ + ( )L K x C J Mh i j gr .
( ) ⇒ ( )ii i Let ∈ ( )r s t h R, , and ∈ ( )x h M with ∈rstx C. Let U , L and K be ideals of R generated by the

elements r s t, , , respectively, that is, =U rR, =L sR and =K tR. So, ⊕= ∈U rRg G g, ⊕= ∈L sRg G g and =K
⊕ ∈ tRg G g are graded ideals of R. Moreover, for every ∈g G, =U rRg g, =L sRg g and =K tRg g. In particular,

=U rRe e, =L sRe e and =K tRe e. Now, by our assumption, ⊆U L K x Ce e e . Hence, either ⊆ + ( )U L x C J Me e gr or
⊆ + ( )U K x C J Me e gr or ⊆ + ( )L K x C J Me e gr . So, either = ∈ = ⊆ + ( )rsx r s x rR sR x U L x C J M1 1 e e e e gr or =rtx

∈ = ⊆ + ( )r t x rR tR x U K x C J M1 1 e e e e gr or = ∈ = ⊆ + ( )stx s t x sR tR x L K x C J M1 1 e e e e gr . Therefore,C is a graded
Jgr-classical 2-absorbing submodule of M . □

Recall from [12] that a graded zero-divisor on a graded R-module M is an element ∈ ( )r h Rg for which
there exists ∈ ( )x h Mh , such that, ≠x 0h but =r x 0g h . The set of all graded zero-divisors on M is denoted by
G- ( )Zdv MR .

The following result studies the behaviour of graded Jgr-classical 2-absorbing submodules under
localization.

Theorem 2.11. Let R be a G-graded ring, M a graded R-module and ⊆ ( )S h R be a multiplicatively closed
subset of R.
(i) If C is a graded Jgr-classical 2-absorbing submodule of M with ( ) ∩ = ∅C M S:R , then −S C1 is a graded

Jgr-classical 2-absorbing submodule of −S M1 .

(ii) If −S C1 is a graded Jgr-classical 2-absorbing submodule of −S M1 with ∩S G- ( /( + ( ))) = ∅Zdv M C J MR gr , then
C is a graded Jgr-classical 2-absorbing submodule of M .
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Proof. (i) Since ( ) ∩ = ∅C M S:R , we get −S C1 as a proper graded submodule of −S M1 . Assume that
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Thus, −S C1 is a graded Jgr-classical 2-absorbing submodule of −S M1 .
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□

Let M and S be two graded R-modules. A homomorphism of graded R-modules →f M S: is a homo-
morphism of R-modules that satisfy ( ) ⊆f M Sg g, for every ∈g G, (see [18]).

Recall from [19] that a proper graded submodule C of a graded R-module M is said to be a gr-small
submodule of M (for short ≪C Mg ), if for every proper graded submodule K of M , we have + ≠C K M .

Theorem 2.12. [20, Theorem 2.12] Let R be a G-graded ring and M , S be the graded R-modules.
(i) If →f M S: is a graded homomorphism, then ( ( )) ⊆ ( )f J M J Sgr gr .

(ii) If →f M S: is a graded epimorphism and ( ) ≪ker f Mg , then ( ( )) = ( )f J M J Sgr gr .

Theorem 2.13. Let R be a G-graded ring, M and S be two graded R-modules and →f M S: be a graded
epimorphism.
(i) If C is a graded Jgr-classical 2-absorbing submodule of M with ( ) ⊆ker f C, then ( )f C is a graded Jgr-clas-

sical 2-absorbing submodule of S.
(ii) If ′C is a graded Jgr-classical 2-absorbing submodule of S with ( ) ≪ker f Mg , then ( ′)

−f C1 is a graded
Jgr-classical 2-absorbing submodule of M .

Proof. (i) Let ag, ∈ ( )a a h R,h i and ∈ ( )s h Sj with ∈ ( )a a a s f Cg h i j . Then, there exists ∈ ( )x h Mj such that
( ) =f x sj j as f is a graded epimorphism. So, ( ) = ( ) ∈ ( )a a a f x f a a a x f Cg h i j g h i j . Hence, there exists ∈ ∩ ( )b C h Mk

such that ( ) = ( )f a a a x f bg h i j k . It follows that − ∈ ( ) ⊆a a a x b ker f C,g h i j k thus ∈a a a x Cg h i j . Since C is a
graded Jgr-classical 2-absorbing submodule of M, we get either ∈ + ( )a a x C J Mg h j gr or ∈ + ( )a a x C J Mg i j gr

or ∈ + ( )a a x C J Mh i j gr . By Theorem 2.12(i), we get either ∈ ( ) + ( )a a s f C J Sg h j gr or ∈ ( ) + ( )a a s f C J Sg i j gr or
∈ ( ) + ( )a a s f C J Sh i j gr . Therefore, ( )f C is a graded Jgr-classical 2-absorbing submodule of S.

(ii) Let ∈ ( )d d d h R, ,g h i and ∈ ( )b h Mj with ∈ ( ′)
−d d d b f Cg h i j

1 . So, ( ) ∈ ′d d d f b Cg h i j . Since ′C is a graded

Jgr-classical 2-absorbing submodule of S, we get either ( ) = ( ) ∈ ′ + ( )d d f b f d d b C J Sg h j g h j gr or ( ) =d d f bg i j

( ) ∈ ′ + ( )f d d b C J Sg i j gr or ( ) = ( ) ∈ ′ + ( )d d f b f d d b C J Sh i j h i j gr . Since ( ) ≪ker f M,g by Theorem 2.12(ii), we have
( ( )) = ( )f J M J Sgr gr . It follows that either ∈ ( ′) + ( )

−d d b f C J Mg h j gr
1 or ∈ ( ′) + ( )

−d d b f C J Mg i j gr
1 or ∈d d bh i j

( ′) + ( )
−f C J Mgr

1 . Therefore, ( ′)
−f C1 is a graded Jgr-classical 2-absorbing submodule of M . □
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