Research Article

Zhitao Guo*

Generalized Stević-Sharma operators from the minimal Möbius invariant space into Bloch-type spaces

https://doi.org/10.1515/dema-2022-0245
received April 8, 2022; accepted May 17, 2023

Abstract: The aim of this study is to investigate the boundedness, essential norm, and compactness of generalized Stević-Sharma operator from the minimal Möbius invariant space into Bloch-type space.

Keywords: generalized Stević-Sharma operator, minimal Möbius invariant space, Bloch-type space, essential norm

MSC 2020: 47B38, 30H25, 30H30

1 Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and \mathbb{N} the set of positive integers. Denote by $H(\mathbb{D})$ the class of all analytic functions on \mathbb{D} and $S(\mathbb{D})$ the family of all analytic self-maps of \mathbb{D}.

The set of all conformal automorphisms of \mathbb{D} forms a group, called the Möbius group, and is denoted by $\text{Aut}(\mathbb{D})$. It is well known from complex analysis that every element of $\text{Aut}(\mathbb{D})$ has the form $e^{i\theta} \sigma_w(z)$, where θ is a real number and

$$\sigma_w(z) = \frac{w - z}{1 - wz}, \quad w \in \mathbb{D},$$

is a special automorphism of \mathbb{D} exchanging the points w and 0. Let X be a linear space of analytic functions on \mathbb{D}. Then, X is said to be Möbius invariant if for all $f \in X$ and $v \in \text{Aut}(\mathbb{D})$, $f \circ v \in X$ and satisfies that $||f \circ v||_X = ||f||_X$ (see [1]). A typical example of Möbius invariant space is the analytic Besov space B_p: Recall that for $1 < p < \infty$, a function $f \in H(\mathbb{D})$ belongs to B_p if

$$\int_\mathbb{D} |f(z)|^p (1 - |z|^2)^{p-2} dA(z) < \infty,$$

where dA is the normalized Lebesgue area measure on \mathbb{D}. Note that when $p = 2$, B_2 is known as the Dirichlet space, which is the only Möbius invariant Hilbert space (see [2]).

The analytic Besov space B_1 consists of all $f \in H(\mathbb{D})$, which have a representation as:

$$f(z) = \sum_{n=1}^{\infty} a_n \sigma_n(z),$$

for some sequences $\{a_n\}_{n \in \mathbb{N}} \in l^1$ and $\{\lambda_n\}_{n \in \mathbb{N}}$ in \mathbb{D}. The norm in B_1 is defined by:

$$||f||_{B_1} = \inf \left\{ \sum_{n=1}^{\infty} |a_n| : f(z) = \sum_{n=1}^{\infty} a_n \sigma_n(z) \right\}.$$
By [1], we know that the space B_1 is the minimal Möbius invariant space, as it is contained in any Möbius invariant space. Furthermore, B_1 is identical with the set of $f \in H(D)$ for which $f'' \in L^1(D, dA)$, and there exist constants C_1 and C_2 such that

$$C_1||f||_{B_1} \leq |f(0)| + |f'(0)| + \int_D |f''(z)|dA(z) \leq C_2||f||_{B_1}.$$

For more studies of B_1 space, see also [3–8].

Suppose that μ is a weight, namely, a strictly positive continuous function on D. We also assume that μ is radial: $\mu(z) = \mu(|z|)$ for any $z \in D$. An $f \in H(D)$ is said to belong to the Bloch-type space B_μ, if

$$\sup_{z \in D} \mu(z)|f'(z)| < \infty.$$

B_μ is a Banach space under the norm $||f||_{B_\mu} = |f(0)| + \sup_{z \in D} \mu(z)|f'(z)|$. When $\mu(z) = 1 - |z|^2$, the induced space B_{μ} reduces to the classical Bloch space, which is the maximal Möbius invariant space [9]. For some results on the Bloch-type spaces and operators on them, see, for instance, [4,10–14].

Suppose that $\varphi \in S(D)$ and $u \in H(D)$, the composition and multiplication operators on $H(D)$ are defined, respectively, by:

$$C_\varphi f(z) = f(\varphi(z)) \quad \text{and} \quad M_u f(z) = u(z)f(z),$$

where $f \in H(D)$ and $z \in D$. The product of these two operators is known as the weighted composition operator $W_{u,\varphi} = u(z)f(\varphi(z))$. It is important to provide function theoretic characterizations when φ and u induce a bounded or compact weighted composition operator on various function spaces. See [7,15] for more research about the (weighted) composition operators acting on several spaces of analytic functions.

The differentiation operator D, which is defined by $Df(z) = f'(z)$ for $f \in H(D)$, plays an important role in operator theory and dynamical system.

The first papers on product-type operators including the differentiation operator dealt with the operators DC_φ and $C_\varphi D$ (see, for example, [11,16–19]). In [20,21], Stević and co-workers introduced the so-called Stević-Sharma operator as follows:

$$T_{u,\varphi} f(z) = u(z)f(\varphi(z)) + \nu(z)f'(\varphi(z)), \quad f \in H(D),$$

where $u, \nu \in H(D)$ and $\varphi \in S(D)$. By taking some specific choices of the involving symbols, we can easily obtain the general product-type operators:

$$M_u C_\varphi = T_{u,0,\varphi}, \quad C_\varphi M_u = T_{u,\varphi,0}, \quad M_u D = T_{u,u,0}, \quad D M_u = T_{u,u,0}, \quad C_\varphi D = T_{0,1,\varphi},$$

$$DC_\varphi = T_{0,0,\varphi}, \quad M_u C_\varphi D = T_{u,0,0}, \quad M_u D C_\varphi = T_{u,u,0}, \quad C_\varphi M_u D = T_{0,u,0}, \quad C_\varphi D M_u = T_{0,u,0},$$

$$D M_u C_\varphi = T_{0,u,0}, \quad C_\varphi D M_u = T_{u,u,u}, \quad D C_\varphi M_u = T_{0,u,u}.$$

Recently, there has been an increasing interest in studying the Stević-Sharma operator between various spaces of analytic function. For instance, the boundedness, compactness, and essential norm of $T_{u,v,\varphi}$ on the weighted Bergman space were characterized by Stević et al. in [20,21]. Wang et al. in [22] considered the difference of two Stević-Sharma operators and investigated its boundedness, compactness, and order boundedness between Banach spaces of analytic functions. Zhu et al. in [14] provided some necessary and sufficient conditions for $T_{u,v,\varphi}$ to be bounded or compact when considered as an operator from the analytic Besov space B_μ into Bloch space. Abbasi et al. in [23] generalized the Stević-Sharma operator as follows:

$$T_{u,v,\varphi}^m f(z) = u(z)f(\varphi(z)) + \nu(z)f^{(m)}(\varphi(z)), \quad m \in \mathbb{N},$$

and studied its boundedness, compactness, and essential norm from Hardy space into the nth weighted-type space, which was introduced by Stević in [24] (see also [25]). Note that when $m = 1$, we obtain the Stević-Sharma operator $T_{u,v,\varphi}$. Some more related results can be found (see, e.g., [4,5,8,10–14,26–32] and references therein).

Motivated by the aforementioned studies, here we investigate the boundedness and essential norm of the generalized Stević-Sharma operator $T_{u,v,\varphi}^m$ from the minimal Möbius invariant space B_1 into the Bloch-type space B_μ. As a corollary, we give the characterizations of its compactness.
Recall that the essential norm of a bounded linear operator \(T : X \to Y \) is the distance from \(T \) to the compact operators \(K : X \to Y \), that is,
\[
\|T\|_{e, X \to Y} = \inf\{\|T - K\|_{X \to Y} : K \text{ is compact}\},
\]
where \(X \) and \(Y \) are the Banach spaces. Note that \(\|T\|_{e, X \to Y} = 0 \) if and only if \(T : X \to Y \) is compact.

Throughout this article, for nonnegative quantities \(X \) and \(Y \), we use the abbreviation \(\lesssim X \) and \(\gtrsim Y \) if there exists a positive constant \(C \) independent of \(X \) and \(Y \) such that \(X \leq CY \). Moreover, we write \(X \approx Y \) if \(\lesssim X \approx Y \).

2 Auxiliary results

In this section, we state several auxiliary results that are needed in the proofs of our main results. The following lemma can be found, for example, in [8] (see also [33]).

Lemma 1. Let \(k \in \mathbb{N} \), then
\[
|f|_w \lesssim ||f||_{B_1} \quad \text{and} \quad (1 - |z|^2)^k |f^{(k)}(z)| \lesssim ||f||_{B_1}
\]
for each \(f \in B_1 \).

For any \(w \in \mathbb{D} \) and \(j \in \mathbb{N} \), set
\[
f_{j,w}(z) = \frac{(1 - |w|^2)^j}{(1 - |w|^2)^j}, \quad z \in \mathbb{D}.
\]
It is easily seen that \(f_{j,w} \in B_1 \) and \(\sup_{w \in \mathbb{D}} ||f_{j,w}||_{B_1} \leq 1 \) for each \(j \in \mathbb{N} \). Moreover, \(f_{j,w} \) converges to 0 uniformly on compact subsets of \(\mathbb{D} \) as \(|w| \to 1 \).

Lemma 2. Let \(m \in \mathbb{N} \) and \(m > 1 \). For any \(w \in \mathbb{D} \setminus \{0\} \) and \(i, k \in \{0, 1, m, m + 1\} \), there exists a function \(g_{i,w} \in B_1 \) such that
\[
g_{i,w}^{(k)}(w) = \frac{\mathbb{W}^k \delta_{ik}}{(1 - |w|^2)^k},
\]
where \(\delta_{ik} \) is the Kronecker delta.

Proof. For any \(w \in \mathbb{D} \setminus \{0\} \) and constants \(c_1, c_2, c_3, \) and \(c_4 \), let
\[
g_w(z) = \sum_{j=1}^{4} c_j f_{j,w}(z),
\]
where \(f_{j,w} \) is defined in (1). For each \(i \in \{0, 1, m, m + 1\} \), the system of linear equations
\[
\begin{align*}
g_w^{(0)}(w) &= c_1 + c_2 + c_3 + c_4 = \delta_{i0}, \\
g_w^{(1)}(w) &= (c_1 + 2c_2 + 3c_3 + 4c_4) \frac{\mathbb{W}}{1 - |w|^2} = \frac{\mathbb{W} \delta_{i1}}{1 - |w|^2}, \\
g_w^{(m)}(w) &= \left(m! c_1 + (m + 1)! c_2 + \frac{(m + 2)!}{2} c_3 + \frac{(m + 3)!}{6} c_4 \right) \frac{\mathbb{W}^m}{(1 - |w|^2)^m} = \frac{\mathbb{W}^m \delta_{im}}{(1 - |w|^2)^m}, \\
g_w^{(m+1)}(w) &= \left((m + 1)! c_1 + (m + 2)! c_2 + \frac{(m + 3)!}{2} c_3 + \frac{(m + 4)!}{6} c_4 \right) \frac{\mathbb{W}^{m+1}}{(1 - |w|^2)^{m+1}} = \frac{\mathbb{W}^{m+1} \delta_{i(m+1)}}{(1 - |w|^2)^{m+1}}.
\end{align*}
\]
has a unique solution \(c_1^i, c_2^i, c_3^i, \) and \(c_4^i \), which is independent of \(w \), since the determinant of the system
For such \(c^j_j \in \{1, 2, 3, 4\} \), the function

\[
g_{i,w}(z) = \sum_{j=1}^{4} c^j_{f_{j,w}}(z)
\]

satisfies the desired result.

By a similar argument, we can obtain the following lemma.

Lemma 3. For any \(w \in \mathbb{D} \setminus \{0\} \) and \(i, k \in \{0, 1, 2\} \), there exists a function \(h_{i,w} \in B_1 \) such that

\[
h_{i,w}^{(k)}(z) = \frac{\overline{w}^k \delta_{ik}}{(1 - |w|^2)^k},
\]

where \(\delta_{ik} \) is the Kronecker delta.

In order to estimate the essential norm of \(T^m_{u,v,\varphi} : B_1 \to B_\mu \), we need the following two lemmas. The first one characterizes the compactness in terms of sequential convergence, whose proof is similar to that of [15, Proposition 3.11], so we omit the details.

Lemma 4. Let \(m \in \mathbb{N} \), \(u, v \in H(\mathbb{D}) \), and \(\varphi \in S(\mathbb{D}) \). Then, the operator \(T^m_{u,v,\varphi} : B_1 \to B_\mu \) is compact if and only if for each bounded sequence \(\{f_n\}_{n \in \mathbb{N}} \) in \(B_1 \) converges to zero uniformly on compact subsets of \(\mathbb{D} \) as \(n \to \infty \), we have

\[
|T^m_{u,v,\varphi}f_n|_{\mathcal{B}_\mu} \to 0 \text{ as } n \to \infty.
\]

Lemma 5. [8] Every bounded sequence in \(B_1 \) has a subsequence that converges uniformly in \(\mathbb{D} \) to a function in \(B_1 \).

3 Main results

In this section, we formulate our main results. For simplicity of the expressions, we write

\[
A_j(z) = |u(z)| \varphi(z)|, \quad A_{m}(z) = |v(z)|, \quad A_{m+1}(z) = |v(z)\varphi(z)|.
\]

We first give several characterizations of the generalized Stević-Sharma operator \(T^m_{u,v,\varphi} : B_1 \to B_\mu \) to be bounded.

Theorem 1. Let \(u, v \in H(\mathbb{D}) \), \(\varphi \in S(\mathbb{D}) \), \(m \in \mathbb{N} \), \(m > 1 \), and \(\mu \) be a radial weight. Then, the following statements are equivalent.

(i) The operator \(T^m_{u,v,\varphi} : B_1 \to B_\mu \) is bounded.

(ii) \(u \in B_\mu \),

\[
\sum_{j=1}^{4} \sup_{w \in \mathbb{D}} ||T^m_{u,v,\varphi}f_{j,w}||_{\mathcal{B}_\mu} < \infty,
\]

and

\[
\frac{1}{12}m!(m+1)!m^2(m-1)(m+1) \neq 0.
\]
\[\sum_{i \in \{1, m, m+1\}} \sup_{z \in D} \mu(z)A_i(z) < \infty, \]

where \(f_{j,w} \) are defined in (1).

(iii) \(u \in B_{\mu} \), and

\[\sum_{i \in \{1, m, m+1\}} \sup_{z \in D} \frac{\mu(z)A_i(z)}{(1 - |\varphi(z)|^2)^i} < \infty. \]

Proof. (i) \(\Rightarrow \) (ii). Suppose that \(T_{u,v,\varphi}^m : B_1 \to B_{\mu} \) is bounded. Taking \(f_j(z) = 1 \in B_1 \) we obtain, \(T_{u,v,\varphi}^m f_j = u \in B_{\mu} \), that is,

\[\sup_{z \in D} \mu(z)|u'(z)| < \infty. \quad (2) \]

For each \(w \in D \) and \(j \in \{1, 2, 3, 4\} \), \(|f_{j,w}|_{B_1} \leq 1 \) and hence by the boundedness of \(T_{u,v,\varphi}^m \) we have \(||T_{u,v,\varphi}^m f_{j,w}||_{B_{\mu}} < \infty \). Therefore,

\[\sum_{j=1}^4 \sup_{w \in D} ||T_{u,v,\varphi}^m f_{j,w}||_{B_{\mu}} < \infty. \]

Taking \(f_1(z) = z \in B_1 \) and using the boundedness of \(T_{u,v,\varphi}^m : B_1 \to B_{\mu} \), we obtain

\[\infty > ||T_{u,v,\varphi}^m f_1||_{B_{\mu}} \geq \sup_{z \in D} \mu(z)(T_{u,v,\varphi}^m f_1)'(z) \]
\[= \sup_{z \in D} \mu(z)|u'(z)|\varphi(z) + u(z)\varphi'(z)| \]
\[\geq \sup_{z \in D} \mu(z)|u'(z)|\varphi(z) - \sup_{z \in D} \mu(z)|u'(z)|\varphi(z)|, \]

which along with (2) and the fact that \(|\varphi(z)| < 1 \), it follows that

\[\sup_{z \in D} \mu(z)|u'(z)| |u(z)| < \infty. \quad (3) \]

Applying the operator \(T_{u,v,\varphi}^m \) for \(f_m(z) = z^m \in B_1 \) yields

\[\infty > ||T_{u,v,\varphi}^m f_m||_{B_{\mu}} \geq \sup_{z \in D} \mu(z)(T_{u,v,\varphi}^m f_m)'(z) = \sup_{z \in D} \mu(z)|u'(z)\varphi(z)^m + m\varphi(z)|\varphi(z)^{m-1} + m!\varphi(z)|. \]

Using (2), (3), the fact that \(|\varphi(z)| < 1 \), and the triangle inequality, we obtain

\[\sup_{z \in D} \mu(z)|\varphi(z)^m| < \infty. \quad (4) \]

By choosing \(f_{m+1}(z) = z^{m+1} \in B_1 \), we conclude that

\[\infty > ||T_{u,v,\varphi}^m f_{m+1}||_{B_{\mu}} \geq \sup_{z \in D} \mu(z)(T_{u,v,\varphi}^m f_{m+1})'(z) \]
\[= \sup_{z \in D} \mu(z)|u'(z)\varphi(z)^{m+1} + (m + 1)u(z)\varphi(z)|\varphi(z)^m + (m + 1)!\varphi'(z)|\varphi(z) + (m + 1)!\varphi(z)|. \]

By using (2), (3), and (4), in the same manner, we obtain

\[\sup_{z \in D} \mu(z)|\varphi(z)^m| < \infty. \quad (5) \]

Combining (3), (4), and (5), we deduce that

\[\sum_{i \in \{1, m, m+1\}} \sup_{z \in D} \mu(z)A_i(z) < \infty. \]

(ii) \(\Rightarrow \) (iii). Assume that (ii) holds. By Lemma 2, for each \(i \in \{1, m+1\} \) and \(\varphi(w) \neq 0 \), there exist constants \(c_1, c_2, c_3, \) and \(c_4 \) such that
\[
g_{j,\phi(w)}(z) = \sum_{j=1}^{4} c_{f_{j,\phi(w)}}(z) \in B_1,
\]

and
\[
g^{(k)}_{j,\phi(w)}(w) = \frac{\phi(w)^k}{\delta_{k}}.
\]

where \(f_{j,w} \) are defined in (1) and \(k \in \{0, 1, m, m + 1\} \). Then,
\[
\sum_{j=1}^{\infty} \mu_{w}(w) T_{u,\phi(w)} f_{j,\phi(w)}(w) \leq \sup_{w \in \mathbb{D}} \mu_{w}(w) (w) \cdot |f_{j,\phi(w)}(w)|.
\]

From (7) and (ii), for each \(i \in \{1, m, m + 1\} \), we have
\[
\sup_{|\phi(w)| \leq \frac{1}{2}} \mu_{w}(w) \cdot A_{i}(w) < \infty.
\]

and
\[
\sup_{|\phi(w)| \leq \frac{1}{2}} \mu_{w}(w) \cdot A_{i}(w) \leq \sup_{w \in \mathbb{D}} \mu_{w}(w) A_{i}(w) < \infty.
\]

Therefore,
\[
\sum_{i=1}^{m} \sup_{w \in \mathbb{D}} \mu_{z}(w) A_{i}(z) < \infty.
\]

(iii) \(\Rightarrow \) (i). Suppose that (iii) holds. For any \(f \in B_1 \), by Lemma 1, we have
\[
\mu(z) |(T_{u,\phi(w)} f)(z)| \leq \mu(z) u(z) |f(\phi(z))| + \sum_{i=1}^{m} \mu(z) A_{i}(z) |f^{(i)}(\phi(z))| \\
\leq \left(\|u\|_{S_p} + \sum_{i=1}^{m} \frac{\mu(z) A_{i}(z)}{(1 - |\phi(z)|^2)^i}\right) \|f\|_{B_1}.
\]

Moreover,
\[
|(T_{u,\phi(w)} f)(0)| = |u(0) f(\phi(0)) + v(0) f^{(m)}(\phi(0))| \leq \left(\|u(0)\| + \frac{|v(0)|}{(1 - |\phi(0)|^2)^m}\right) \|f\|_{B_1}.
\]

Thus, \(T_{u,\phi(w)} : B_1 \to B_{\mu} \) is bounded. The proof is completed. \(\square \)

By using Lemma 3 instead of Lemma 2, the following result may be proved in much the same way as Theorem 1.

Theorem 2. Let \(u, v \in H(\mathbb{D}) \), \(\phi \in S(\mathbb{D}) \), and \(\mu \) be a radial weight. Then, the following statements are equivalent.

(i) The operator \(T_{u,\phi} : B_1 \to B_{\mu} \) is bounded.

(ii) \(u \in B_{\mu} \),
\[
\sum_{j=1}^{m} \sup_{w \in \mathbb{D}} \|T_{u,\phi} f_{j,\phi}\|_{S_p} < \infty,
\]

and
\[\sup_{z \in D} |\varphi'(z)| + \sup_{z \in D} |\varphi'(z)| < \infty.\]

(iii) \(u \in B_\mu,\) and
\[\sup_{z \in D} \frac{\mu(z) |u(z)\varphi'(z) + v'(z)|}{1 - |\varphi(z)|^2} + \sup_{z \in D} \frac{\mu(z) |v(z)\varphi'(z)|}{1 - |\varphi(z)|^2} < \infty.
\]

Now, we estimate the essential norm of \(T_{u,v,\varphi}^m\) acting from the minimal Möbius invariant space to the Bloch-type space. Then, we obtain some equivalence conditions for compactness of \(T_{u,v,\varphi}^m\).

Theorem 3. Let \(u, v \in H(D), \varphi \in S(D),\) \(m \in \mathbb{N}, m > 1,\) and \(\mu\) be a radial weight such that \(T_{u,v,\varphi}^m : B_1 \to B_\mu\) is bounded. Then,
\[
|T_{u,v,\varphi}^m|_{e,B_1 \to B_\mu} = \sum_{j=1}^{4} \limsup_{|w| \to 1} \|T_{u,v,\varphi}^m f_{j,w} \|_{B_\mu} = \sum_{i=|\{1,m,m+1\}|}^{4} \limsup_{|w| \to 1} \frac{\mu(z) A_i(z)}{1 - |\varphi(z)|^2},
\]
where \(f_{j,w}\) are defined in (1).

Proof. We first show that
\[
|T_{u,v,\varphi}^m|_{e,B_1 \to B_\mu} \geq \sum_{j=1}^{4} \limsup_{|w| \to 1} \|T_{u,v,\varphi}^m f_{j,w} \|_{B_\mu}.
\]
It is obvious that for each \(j \in \{1, 2, 3, 4\}\) and \(w \in D,\) \(\|f_{j,w}\|_{B_\mu} \leq 1.\) Moreover, \(f_{j,w}\) converge to zero uniformly on compact subsets of \(D.\) For any compact operator \(K\) from \(B_1\) into \(B_\mu,\) by using some standard arguments (see, e.g., [34,35]), we obtain
\[
\lim_{|w| \to 1} \|Kf_{j,w}\|_{B_\mu} = 0.
\]
It follows that
\[
|T_{u,v,\varphi}^m - K|_{e,B_1 \to B_\mu} \geq \limsup_{|w| \to 1} \|T_{u,v,\varphi}^m - Kf_{j,w}\|_{B_\mu}
\geq \limsup_{|w| \to 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{B_\mu} - \limsup_{|w| \to 1} \|Kf_{j,w}\|_{B_\mu}.
\]
Therefore,
\[
|T_{u,v,\varphi}^m|_{e,B_1 \to B_\mu} = \inf_{K} \|T_{u,v,\varphi}^m - K\|_{e,B_1 \to B_\mu} \geq \sum_{j=1}^{4} \limsup_{|w| \to 1} \|T_{u,v,\varphi}^m f_{j,w}\|_{B_\mu}.
\]

Next, we prove that
\[
|T_{u,v,\varphi}^m|_{e,B_1 \to B_\mu} \geq \sum_{i=|\{1,m,m+1\}|}^{4} \limsup_{|w| \to 1} \frac{\mu(z) A_i(z)}{1 - |\varphi(z)|^2}.
\]
Let \(\{z_j\}\) be a sequence in \(D\) such that \(|\varphi(z_j)| \to 1\) as \(j \to \infty.\) Since \(T_{u,v,\varphi}^m : B_1 \to B_\mu\) is bounded, for any compact operator \(K : B_1 \to B_\mu\) and \(i \in \{1, m, m + 1\},\) applying Lemma 4 and (7), we obtain
\[
|T_{u,v,\varphi}^m - K|_{e,B_1 \to B_\mu} \geq \limsup_{j \to \infty} \|T_{u,v,\varphi} g_{i,\varphi(z_j)}\|_{B_\mu} - \limsup_{j \to \infty} \|Kg_{i,\varphi(z_j)}\|_{B_\mu}
\geq \limsup_{j \to \infty} \frac{\mu(z_j) A_i(z_j) |\varphi(z_j)|^i}{1 - |\varphi(z_j)|^2},
\]
where \(g_{i,\varphi(z_j)}\) are defined in (6). Therefore,
\[
|T_{u,v,\varphi}^m|_{e,B_1 \to B_\mu} \geq \limsup_{j \to \infty} \frac{\mu(z_j) A_i(z_j) |\varphi(z_j)|^i}{1 - |\varphi(z_j)|^2} = \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) A_i(z)}{|\varphi(z)|^2},
\]
from which we have
\[||T^m_{u,v,\varphi}||_{B_1 \rightarrow B_1} \leq \sum_{i \in [1, m, m+1]} \limsup_{|\varphi(z)| \to 1} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2}. \]
(9)

Combining (8) and (9) yields
\[||T^m_{u,v,\varphi}||_{B_1 \rightarrow B_1} \leq \min \left\{ 4 \sum_{j=1}^{\infty} \limsup_{|w| \to 1} ||T^m_{u,v,\varphi}f_j||_{B_1}, \sum_{i \in [1, m, m+1]} \limsup_{|\varphi(z)| \to 1} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2} \right\}. \]

It is sufficient to show that
\[||T^m_{u,v,\varphi}||_{B_1 \rightarrow B_1} \leq \min \left\{ 4 \sum_{j=1}^{\infty} \limsup_{|w| \to 1} ||T^m_{u,v,\varphi}f_j||_{B_1}, \sum_{i \in [1, m, m+1]} \limsup_{|\varphi(z)| \to 1} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2} \right\}. \]

Define \(K_r f(z) = f_r(z) = f(rz) \), where \(0 \leq r < 1 \). Then, \(K_r : B_1 \rightarrow B_1 \) is a compact operator with \(||K_r|| \leq 1 \) and \(f_r \to f \) uniformly on compact subsets of \(D \) as \(r \to 1 \) clearly. Let \(\{r_j\} \subseteq (0, 1) \) be a sequence such that \(r_j \to 1 \) as \(j \to \infty \). Then, for each \(j \in \mathbb{N} \), \(T^m_{u,v,\varphi}K_r : B_1 \rightarrow B_1 \) is compact, and so
\[||T^m_{u,v,\varphi}||_{B_1 \rightarrow B_1} \leq \limsup_{j \to \infty} ||T^m_{u,v,\varphi} - T^m_{u,v,\varphi}K_r||_{B_1 \rightarrow B_1}. \]

Therefore, we only need to show that
\[
\limsup_{j \to \infty} ||T^m_{u,v,\varphi} - T^m_{u,v,\varphi}K_r||_{B_1 \rightarrow B_1} \leq \min \left\{ 4 \sum_{j=1}^{\infty} \limsup_{|w| \to 1} ||T^m_{u,v,\varphi}f_j||_{B_1}, \sum_{i \in [1, m, m+1]} \limsup_{|\varphi(z)| \to 1} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2} \right\}. \]
(10)

For every \(f \in B_1 \) such that \(||f||_{B_1} \leq 1 \), we have
\[||(T^m_{u,v,\varphi} - T^m_{u,v,\varphi}K_r)f||_{B_1} \leq ||T^m_{u,v,\varphi}f(0) - T^m_{u,v,\varphi}f_r(0)|| + \sup_{z \in D} \mu(z)||T^m_{u,v,\varphi}f - T^m_{u,v,\varphi}f_r||(z) \]
\[\leq |(f - f_r)(\varphi(0))u(0)| + |(f - f_r)^{m}(\varphi(0))v(0)| + \sup_{z \in D} \mu(z)||(f - f_r)(\varphi(z))u(z)|| \]
\[+ \sup_{|\varphi(z)| \leq N} \mu(z) \sum_{i \in [1, m, m+1]} |(f - f_r)^{(i)}(\varphi(z))|A_i(z) \]
\[+ \sup_{|\varphi(z)| > N} \mu(z) \sum_{i \in [1, m, m+1]} |(f - f_r)^{(i)}(\varphi(z))|A_i(z), \]
(11)
where \(N \in \mathbb{N} \) such that \(r_j \geq \frac{2}{3} \) for all \(j \geq N \). Furthermore, we have \((f - f_r)^{(i)} \to 0 \) uniformly on compact subsets of \(D \) as \(j \to \infty \) for any nonnegative integer \(t \). Now, Theorem 1 implies
\[\limsup_{j \to \infty} E_0 = \limsup_{j \to \infty} E_2 = 0. \]
(12)

From Lemma 5,
\[\lim_{j \to \infty} E_1 \leq ||u||_{B_1} \limsup_{j \to \infty} |(f - f_r)(z)| = 0. \]
(13)

Finally, we estimate \(E_3 \),
\[E_3 \leq \sum_{i \in [1, m, m+1]} \sup_{|\varphi(z)| \leq \gamma_N} \mu(z)|(f - f_r)^{(i)}(\varphi(z))|A_i(z) + \sum_{i \in [1, m, m+1]} \sup_{|\varphi(z)| > \gamma_N} \mu(z)|(f - f_r)^{(i)}(\varphi(z))|A_i(z). \]
(14)

For each \(i \in [1, m, m+1] \), using Lemma 1, (6), and (7), we obtain
Taking the limits as $N \to \infty$ in (15) and (16), we obtain

$$\limsup_{j \to \infty} F_i \leq \sum_{j=1}^{4} \limsup_{|\varphi(z)| \to N} m \|T_{u,v,\varphi} f_j \| s_{\mu}$$

and

$$\limsup_{j \to \infty} F_i \leq \limsup_{|\varphi(z)| \to -1} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2}.\quad (17)$$

Similarly, we have

$$\limsup_{j \to \infty} G_i \leq \sum_{j=1}^{4} \limsup_{|\varphi(z)| \to N} m \|T_{u,v,\varphi} f_j \| s_{\mu} \quad \text{and} \quad \limsup_{j \to \infty} G_i \leq \limsup_{|\varphi(z)| \to -1} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2}.\quad (18)$$

Therefore, by (11)–(14) and (17)–(19), we obtain

$$\limsup_{j \to \infty} \|T_{u,v,\varphi} \Delta_m \| s_{\mu} = \limsup_{j \to \infty} \|T_{u,v,\varphi} f_j \| s_{\mu} \leq \sum_{j=1}^{4} \limsup_{|\varphi(z)| \to N} m \|T_{u,v,\varphi} f_j \| s_{\mu},$$

and

$$\limsup_{j \to \infty} \|T_{u,v,\varphi} \Delta_m \| s_{\mu} = \limsup_{j \to \infty} \|T_{u,v,\varphi} f_j \| s_{\mu} \leq \sum_{|z| \in [1, m+1]} \limsup_{|\varphi(z)| \to N} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2}.\quad (19)$$

From the last two inequalities, we obtain (10) and the proof is completed. \(\square\)

Corollary 1. Let $u, v \in H(D), \varphi \in S(D), m \in \mathbb{N}, m > 1$, and μ be a radial weight. Suppose that $T_{u,v,\varphi}^m : B_1 \to B_\mu$ is bounded, then the following statements are equivalent.

(i) The operator $T_{u,v,\varphi}^m : B_1 \to B_\mu$ is compact.

(ii) \[\sum_{j=1}^{4} \limsup_{|\varphi(z)| \to N} m \|T_{u,v,\varphi} f_j \| s_{\mu} = 0. \]

(iii) \[\sum_{|z| \in [1, m+1]} \limsup_{|\varphi(z)| \to N} \frac{\mu(z)A_i(z)}{1 - |\varphi(z)|^2} = 0. \]

By the same method as in the proof of Theorem 3, we can obtain the following results for the case $m = 1$, namely, the Stević-Sharma operator.
Theorem 4. Let $u, v \in H(D), \varphi \in S(D)$, and μ be a radial weight such that $T_{u,v,\varphi} : B_1 \to B_{\mu}$ is bounded. Then,

$$
\|T_{u,v,\varphi}\|_{B_1 \to B_{\mu}} = \sum_{j=1}^{3} \limsup_{|w| \to 1} \|T_{u,v,\varphi} f_j, w\|_{S_\mu}
$$

$$
= \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) |u(z)\varphi'(z) + v'(z)|}{1 - |\varphi(z)|^2} + \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) |v(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^2}.
$$

Corollary 2. Let $u, v \in H(D), \varphi \in S(D)$, and μ be a radial weight. Suppose that $T_{u,v,\varphi} : B_1 \to B_{\mu}$ is bounded, then the following statements are equivalent.

(i) The operator $T_{u,v,\varphi} : B_1 \to B_{\mu}$ is compact.

(ii) \[
\sum_{j=1}^{3} \limsup_{|w| \to 1} \|T_{u,v,\varphi} f_j, w\|_{S_\mu} = 0.
\]

(iii) \[
\limsup_{|\varphi(z)| \to 1} \frac{\mu(z) |u(z)\varphi'(z) + v'(z)|}{1 - |\varphi(z)|^2} + \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) |v(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^2} = 0.
\]

Acknowledgements: The author is grateful to the referees and the editor for bringing important references to our attention and many valuable suggestions that greatly improved the final version of this manuscript.

Funding information: This work was supported by the National Natural Science Foundation of China (No. 12101188).

Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The author states no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analyzes during this study.

References

