Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 9, 2015

An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem

  • Frank Oertel
From the journal Dependence Modeling

Abstract

We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.

References

[1] S. Ahmed, U. Çakmak and A. Shapiro. Coherent risk measures in inventory problems. European J. Oper. Res., 182 (1), 226-238 (2007). 10.1016/j.ejor.2006.07.016Search in Google Scholar

[2] R. B. Ash and C. A. Doléans-Dade. Probability and Measure Theory - 2nd Edition. Academic Press (2000). Search in Google Scholar

[3] P. Billingsley. Probability and Measure - 3rd Edition. John Wiley & Sons (1995). Search in Google Scholar

[4] F. Durante, J. Fernández-Sánchez and C. Sempi. A topological proof of Sklar’s theorem. Appl.Math. Lett. 26, 945-948 (2013). Search in Google Scholar

[5] P. Embrechts and M. Hofert. A note on generalized inverses. Math. Methods Oper. Res., 77 (3), 423-432 (2013). 10.1007/s00186-013-0436-7Search in Google Scholar

[6] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time - 3rd Edition. De Gruyter Textbook (2011). 10.1515/9783110218053Search in Google Scholar

[7] M. Fréchet. Sur les tableaux de corrélation dont les marges sont donnés. Ann. Univ. Lyon, Science 4, 13-84 (1951). Search in Google Scholar

[8] E. P. Klement, R. Mesiar and E. Pap. Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Set. Syst., 104(1), 3-13 (1999). 10.1016/S0165-0114(98)00252-8Search in Google Scholar

[9] C. Feng, J. Kowalski, X. M. Tu and H. Wang. A Note on Generalized Inverses of Distribution Function and Quantile Transformation. Applied Mathematics, Scientific Research Publishing, 3 (12A), 2098-2100 (2012). 10.4236/am.2012.312A289Search in Google Scholar

[10] J. F. Mai and M. Scherer. Simulating Copulas. Imperial College Press, London (2012). 10.1142/p842Search in Google Scholar

[11] D. S. Moore and M. C. Spruill. Unified large-sample theory of general Chi-squared statistics for tests of fit. Ann. Statist., 3, 599-616 (1975). 10.1214/aos/1176343125Search in Google Scholar

[12] L. Rüschendorf. On the distributional transform, Sklar’s Theorem, and the empirical copula process. J. Statist. Plann. Inference 139(11), 3921-3927 (2009). 10.1016/j.jspi.2009.05.030Search in Google Scholar

[13] B. Schweizer and A. Sklar. Operations on distribution functions not derivable from operations on random variables. Studia Math. 52, 43-52 (1974). Search in Google Scholar

[14] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland, New York (1983). Search in Google Scholar

[15] A. Sklar. Fonctions de répartition à n dimensions et leursmarges. Publications de l’Institut Statistique de l’Université de Paris 8, 229-231 (1959). Search in Google Scholar

Received: 2015-3-11
Accepted: 2015-8-12
Published Online: 2015-9-9

© 2015 Frank Oertel

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.9.2023 from https://www.degruyter.com/document/doi/10.1515/demo-2015-0008/html
Scroll to top button