Abstract
Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs) proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.
References
[1] Górecki, J., M. Hofert, and M. Holena (2014). On the consistency of an estimator for hierarchical Archimedean copulas. In J. Talašová, J. Stoklasa, and T. Talášek (Eds.), 32nd International Conference on Mathematical Methods in Economics, pp. 239-244. Palacký University, Olomouc.Search in Google Scholar
[2] Górecki, J., M. Hofert, and M. Holena (2016a). An approach to structure determination and estimation of hierarchical Archimedean copulas and its application to bayesian classification. J. Intell. Inf. Syst. 46(1), 21-59.10.1007/s10844-014-0350-3Search in Google Scholar
[3] Górecki, J., M. Hofert, and M. Holena (2016b). On structure, family and parameter estimation of hierarchical Archimedean copulas. Available at https://arxiv.org/abs/1611.09225.Search in Google Scholar
[4] Górecki, J. and M. Holena (2013). An alternative approach to the structure determination of hierarchical Archimedean copulas. Proceedings of the 31st International Conference on Mathematical Methods in Economics (MME 2013), Jihlava, pp. 201 - 206.Search in Google Scholar
[5] Górecki, J. and M. Holena (2014). Structure determination and estimation of hierarchical Archimedean copulas based on Kendall correlation matrix. In A. Appice, M. Ceci, C. Loglisci, G. Manco, E. Masciari, and Z. W. Ras (Eds.), New Frontiers in Mining Complex Patterns, pp. 132-147. Springer-Verlag, Berlin.10.1007/978-3-319-08407-7_9Search in Google Scholar
[6] Hofert, M. (2011). Efficiently sampling nested Archimedean copulas. Comput. Stat. Data Anal. 55(1), 57-70.10.1016/j.csda.2010.04.025Search in Google Scholar
[7] Holena, M., L. Bajer, and M. Šcavnick`y (2015). Using copulas in data mining based on the observational calculus. IEEE T. Knowl. Data Eng. 27(10), 2851-2864.10.1109/TKDE.2015.2426705Search in Google Scholar
[8] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.Search in Google Scholar
[9] Kimberling, C. H. (1974). A probabilistic interpretation of complete monotonicity. Aequationes Math. 10(2), 152-164.10.1007/BF01832852Search in Google Scholar
[10] Matsypura, D., E. Neo, and A. Prokhorov (2016). Estimation of hierarchical archimedean copulas as a shortest path problem. Econ. Lett. 149, 131 - 134.10.1016/j.econlet.2016.10.034Search in Google Scholar
[11] McNeil, A. J. (2008). Sampling nested Archimedean copulas. J. Stat. Comput. Sim. 78(6), 567-581.10.1080/00949650701255834Search in Google Scholar
[12] McNeil, A. J. and J. Nešlehová (2009). Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions. Ann. Stat. 37(5B), 3059-3097.Search in Google Scholar
[13] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York.Search in Google Scholar
[14] Okhrin, O., Y. Okhrin, andW. Schmid (2013). On the structure and estimation of hierarchical Archimedean copulas. J. Econometrics 173(2), 189-204.10.1016/j.jeconom.2012.12.001Search in Google Scholar
[15] Okhrin, O., A. Ristig, and Y. Xu (2016). Copulae in high dimensions: An introduction. Available at https://www.researchgate.net/profie/Yafei_Xu3/publication/309204418_Copulae_in_High_Dimensions_An_Introduction/links/58052cad08aef179365e6dc2.pdf.Search in Google Scholar
[16] Rezapour, M. (2015). On the construction of nested Archimedean copulas for d-monotone generators. Stat. Probabil. Lett. 101, 21-32.10.1016/j.spl.2015.03.001Search in Google Scholar
[17] Segers, J. and N. Uyttendaele (2014). Nonparametric estimation of the tree structure of a nested Archimedean copula. Comput. Stat. Data Anal. 72, 190-204.10.1016/j.csda.2013.10.028Search in Google Scholar
[18] Uyttendaele, N. (2016). On the estimation of nested Archimedean copulas: A theoretical and an experimental comparison. Technical report, UCL. Available at https://dial.uclouvain.be/pr/boreal/object/boreal:171500.Search in Google Scholar
[19] Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236-244.10.1080/01621459.1963.10500845Search in Google Scholar
[20] Zhu,W., C.-W.Wang, and K. S. Tan (2016). Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests. J. Bank. Financ. 69, 20-36. 10.1016/j.jbankfin.2016.01.011Search in Google Scholar
© 2017
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.