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Abstract: Some empirical studies suggest that the computation of certain graph structures from a (large)
historical correlation matrix can be helpful in portfolio selection. In particular, a repeated �nding is that
information about the portfolio weights in the minimum variance portfolio (MVP) from classical Markowitz
theory can be inferred from measurements of centrality in such graph structures. The present article com-
pares the two concepts from a purely algebraic perspective. It is demonstrated that this heuristic relationship
between graph centrality and theMVP does not originate from a structural similarity between the two portfo-
lio selectionmechanisms, but instead is due to speci�c features of observed correlationmatrices. This means
that empirically found relations between both concepts depend critically on the underlying historical data.
Repeated empirical evidence for a strong relationship is hence shown to constitute a stylized fact of �nancial
return time series.
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1 Introduction
The problem of optimal investment in a universe of d assets is central in mathematical �nance. It was �rst
formalized in the seminal work of [22, 23], where optimal investment is considered in terms of a covariance
matrix Σ ∈ Rd×d and, if desired, an expected return estimate µ ∈ Rd. A Markowitz-optimal portfolio is one
that minimizes variance for a given expected target return (resp. maximizes return for a given variance), the
optimal solution of this quadratic optimization problem under linear side constraint being known in closed
form using matrix notation. Among all these optimal portfolios, the so-called minimum variance portfolio

(MVP) is the one with smallest variance, and it depends solely on Σ (independent of µ). This approach has
been extended in di�erent directions, for example to the optimization of alternative risk or return measures
as in [34], or to the inclusion of nonnegativity or cardinality constraints, or discrete-type constraints related
to trading restrictions, which are highly relevant for practitioners as in, e.g., [12, 19]. The problem of robust
covariancematrix estimation is a challenging topic of its own, relevant in di�erent applications, and has also
received considerable attention, see, e.g., [16, 27].

Recently, amore descriptive approach to portfolio selection has emerged: Pioneered by some remarkable
works by Mantegna, e.g. [21], graph-based methods have found their way into �nance literature, and recent
studies, for example [13, 29, 30, 33], explore their usefulness for optimal investment purposes. In this context,
portfolio selection is essentially also based on Σ (or some other d × d-matrix composed of pairwise depen-
dencemeasures), but relies on amore descriptive approach compared to theMarkowitz paradigm. Thematrix
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Σ is reduced to essential information in the form of a planar graph derived from it, such as, e.g., a minimum

spanning tree (MST). The resulting graph structure is used as an easy-to-grasp visualization of the essential
aspects of interconnectedness between the assets. Investment decisions are then based on the idea of choos-
ing ‘central’ or ‘non-central’ assets from the graph, according to certain centrality measures, as, intuitively,
these should be related to risk propagation. Indeed, [29] �nd empirically that the non-central assets in an
MST computed from the historical stock return correlation matrix are prominently represented in the associ-
ated MVP. Similarly, [33] detect that portfolio performance is improved if the constituent assets are selected
among the non-central ones in an MST (or in a maximally �ltered planar graph) derived from the correlation
matrix. Using the same idea but a slightly di�ering technique, [13] bases his analysis on a matrix contain-
ing pairwise mutual information of the assets in order to make the dependence measurement more robust.
He �nds that more central assets yield higher returns, and concludes that portfolio selection should favor
central names with low volatility, which is slightly opposite to the aforementioned references. [30] study the
relation between Markowitz-optimal portfolios and graph-centrality not only empirically, but also provide a
heuristic algebraic connection between both concepts. Like [29, 33], they �nd evidence forMarkowitz-optimal
portfolios favoring non-central assets. However, they also �nd that during certain time periods, in which the
correlation between individual and systemic performance is high, more central assets gain more weight in
Markowitz-optimal portfolios.

The present article analyzes whether there is a signi�cant, inner-mathematical relationship between
Markowitz varianceminimization and graph-based portfolio selection based on the covariance (resp. correla-
tion) matrix. Both approaches essentially base their investment decision solely on Σ, and in such a situation
the Markowitz solution is optimal in a well-de�ned sense, namely variance minimization. When believing
in the Markowitz setting, graph-based portfolio selection in general can lead to suboptimal results in this
sense. Investment strategies based on graph structures seem only reasonable either if (i) data additional to Σ,
for example higher-dimensional dependencemeasures (cf. Section 4), are incorporated into the graph some-
how, if (ii) there is good reason to believe that varianceminimization is not necessarily the target goal leading
to optimal portfolios, if (iii) there is a hidden structural similarity between the selection mechanisms, or if
(iv) it is known a priori that the underlying historical data structure guarantees a strong relationship with
Markowitz portfolios. We demonstrate that condition (iii) is not algebraically given. Existing evidence that
graph-centrality relates to portfolio performance is purely empirical. Since our analysis demonstrates that
the inner-mathematical link between both concepts is rather weak, we conclude that existing �ndings high-
lighting a strong relation rely on the speci�c underlying data used for the estimation of Σ. In Section 3we carry
out our own study conducted on historical market data of credit default swaps (CDS), in order to extend pre-
vious investigations that have all considered equity return data to returns of assets dominated by credit risk.
For small tomoderate portfolio sizes,we�nd examples ofMVPs overweighting central assets.With increasing
portfolio size, however, we �nd that the percentage of MVPs favoring non-central assets grows. This is in line
with the previous �ndings of [29, 30, 33], which all refer to large portfolios (d > 200 assets). The persistence
of such empirical results for large portfolios in studies on di�erent asset classes and time horizons indicates
that correlationmatrices calculated from largemarket data sets indeed tend to exhibit a special, non-random
structure, which was also already observed by [36]. We further identify stylized facts of �nancial correlation
matrices and investigate which of these might be responsible for the repeated empirical �ndings in favor of
a relation between the two approaches. We �nd that a realistic eigenvalue structure alone does not result in
similar outcomes of both portfolio selection methods.

The remainder of the article is organized as follows: Section 2 introduces the required concepts, Section
3 investigates the mathematical common grounds betweenMarkowitz-optimization and graph-based portfo-
lio selection, Section 4 points out general issues to be aware of when using graph-based portfolio selection
methods, and Section 5 concludes.
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2 Concepts
We consider an investment universe of d ∈ N assets. Each asset k = 1, . . . , d is associatedwith its annualized
log-return R

k
, and all investigated methods of portfolio selection are based on an algorithm which depends

on the probability distribution of the vector R := (R1, . . . , Rd).

2.1 Minimum variance portfolio

In classicalMarkowitz portfolio theory, cf. [22, 23], the distribution ofR is described in terms of itsmean vector
µ and its covariancematrix Σ. A portfolio comprised of the d assets is given by a vector x = (x1, . . . , xd)T ∈ Rd

satisfying 1T x = x1 + . . .+x
d

= 1, with 1 denoting a d-dimensional column vector with all entries being equal
to one. Component x

i
gives the portfolio weight of asset i, with negative value corresponding to shortselling

the asset. The side condition 1T x = 1 demands that the portfolio is fully invested, shortselling being allowed.
An optimal portfolio is one that minimizes portfolio variance xT Σ x for a given expected return µT x = c, with
c an input constant. If one omits the constraint µT x = c in the optimizationproblem, one obtains the portfolio
x̄ with the smallest variance, the so-called minimum variance portfolio (MVP). The latter is independent of µ
and is given by

x̄ = x̄(Σ) = Σ

−1 1
1T Σ−1 1 .

We will also occasionally use the abbreviation MVP(Σ) (resp. MVP(Ω)) for the minimum variance portfolio
associated with a covariance matrix Σ (correlation matrix Ω).

2.2 Graphs associated with the covariance matrix

We investigate several graph-based portfolio selection algorithms, which all depend on the distribution
of R solely through the covariance matrix. This choice is made to ensure comparability with the classical
Markowitz approach. Graph-based methods can more generally also be based on any matrix Σ ∈ Rd×d con-
taining pairwise dependence measurements, with diagonal element Σ

ii
, i = 1, . . . , d, interpreted as a mea-

sure of risk associated with asset i. For the sake of later reference we denote the sets of covariance and corre-
lation matrices by

V
d

:=
{
Σ ∈ Rd×d : Σ symmetric and non-negative de�nite

}
,

C
d

:=
{
Ω ∈ V

d
∩ [−1, 1]d×d : all diagonal entries are equal to 1

}
.

Notice that C
d
⊂ V

d
, i.e. every correlationmatrix is a covariancematrix. The set C

d
may be considered a com-

pact subset ofRd (d−1)/2, while V
d
may be considered an unbounded subset ofRd (d+1)/2. Regarding notation,

for every Σ ∈ V
d
there is a unique Ω ∈ C

d
such that

Σ = diag(
√
Σ
ii

)Ω diag(
√
Σ
ii

),

diag(
√
Σ
ii

) =


√
Σ11 0 . . . 0
0

√
Σ22 . . . 0

...
... . . . ...

0 0 . . .

√
Σ
dd

 .
With each Σ ∈ V

d
we associate the weighted, undirected graph G

w
(Σ) with vertex set {1, . . . , d}, edge set¹

{(i, j) : 1 ≤ i < j ≤ d}, and associated edge weights w(Σ
ij

), for a given strictly monotone function w : R→ R.

1 We exclude diagonal entries, as these imply self-loops in the graph, which are not meaningful in the considered applications.
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A popular weight function is the so-called correlation distance, w(x) =
√

2 (1 − x), initially proposed by [21].
Sometimes covariances/correlations are also directly used as weights, w(x) = x. While for increasing w the
interpretation of the edge weights is a measure of connectedness, for decreasing w the interpretation is a
measure of distance, manifesting a “sign change“ in interpretation. For a weighted graph G, a connected
subgraph with the same vertex set and without cycles is called a spanning tree of G. Any connected G has
a spanning tree, and among all spanning trees the one with minimal sum over all its edge weights is called
minimum spanning tree (MST) of G. If all o�-diagonal entries of Σ are mutually di�erent, then there is exactly
one minimum spanning tree of G

w
(Σ), see Matoušek and Nešetřil [25, Ch. 5.4, Ex. 4], which we denote by

MST(Σ).

2.3 Centrality measures

We investigate the relation between ‘central’ resp. ‘peripheral’ assets in the graph associated with Σ and their
weights in the corresponding MVP. An intuitive way of identifying non-central assets in a tree is to consider
its leaves, i.e. vertices with only a single neighbor. More sophisticated de�nitions of centrality, which will be
used in the remainder of this article, are the following:
• Eigenvector centrality of a graph: The adjacency matrix A of a �nite connected graph has entries in
{0, 1} with A

ij
= 0 (resp. A

ij
= 1) meaning that there is no (resp. an) edge between vertex i and vertex j.

By the Perron-Frobenius Theorem, the largest eigenvalue of A is positive and the associated eigenvector
v1 has non-negative components. Consequently, by normalizing v1 in such away that vT1 1 = 1, the domi-
nant eigenvector v1 gives a probability distribution on the vertices. These probabilities can be interpreted
as measurements of centrality in the graph, since v1 is the limit of An 1/1T An 1, i.e. the normalized ver-
sion of An 1, as n → ∞. The i-th entry of An 1 gives precisely the number of all paths in the graph of
length n starting at i (including stopovers, i.e. all paths of length ≤ n without stopovers). Consequently,
the largest entry of v1 corresponds to the vertex from which most di�erent paths are possible, i.e. which
is most connected to other vertices.
While this centrality notion is originally based on unweighted (and interesting only for incomplete)
graphs, [30] heuristically extend it to the weighted graph G

w
(Σ) replacing (A

ij
) by (w(Σ

ij
)) for increas-

ing w, see Section 3.1 for details and comments.
• Mean occupation layer of a tree² This notion, cf. [29], is also called closeness centrality in [28]. The

central vertex of a tree T according to this criterion is de�ned as the vertex r(T) minimizing the so-called
mean occupation layer

`(T) := 1
d

d∑
v=1

L
(
r(T), v, T

)
,

where

L(r, v, T) := length of (unique) tree-path from r to v.

Intuitively, `(T) gives the average length of a path in T from its root r(T) to a vertex, and the root r(T) is
chosen such that this average length is minimal. Later on, we will apply this notion to a minimum span-
ning tree MST(Ω) derived from a correlation matrix Ω. In this case, we will abbreviate r(Ω) = r(MST(Ω))
and `(Ω) = `(MST(Ω)).

For other centrality concepts the interested reader is referred to [13, 28]. Furthermore, we like to point out that
the central vertex of a tree computed via the notion of eigenvector centrality can di�er from the one computed
via the notion of mean occupation layer, as Figure 1 shows.

2 A tree is a connected graph without cycles.
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Figure 1: Central nodes implied by eigenvector centrality (gray) and mean occupation layer (white) may di�er.

3 Graph-based portfolio selection
How do the weights in the variance-minimizing portfolio potentially relate to measurements of centrality in
some associated graph structures?
Here is the heuristic idea: Imagine a graph whose vertices represent the assets and whose weighted edges
are associated with measurements of dependence between the respective assets, such as G

w
(Σ) or a MST

derived from it. It is then intuitive to assume that a variance-minimizing portfolio consists of rather non-
central vertices in this graph because, heuristically, these should form a well-diversi�ed portfolio, i.e. there
should be a signi�cant relationship between centrality measurements in graphs and the MVP. This is the
fundamental idea on which the discussed graph methods are based.
• Empirically: Based on historical stock return data, some studies provide empirical �ndings that in �-

nancial asset return data one is likely to detect a strong relationship between centrality measurements
in graphs and the MVP. In Section 3.3 we conduct our own study on historical CDS data, which provides
further empirical evidence for this hypothesis.

• Algebraically: The MVP is known in closed form as a function of the historical covariance matrix of the
asset returns, and portfolios resulting from graph-based portfolio selection methods are ultimately also
functions of a dependence matrix of these assets. Consequently, one might wonder whether the math-
ematical functions transforming the given input matrices into the portfolio outputs share a great level
of similarity. This would imply that the aforementioned empirical �ndings do not really detect special
structure in the data, but instead are simply due to the fact that one unknowingly looks at the given data
in two quite similar ways.

In the present article, we aim to show that there is no fundamental relation between the centrality mea-
surements on graphs associated with the correlation matrix introduced in Section 2.3 and the weights in the
corresponding MVP for more than 3 assets, and indicate that some of the proposed graph-based portfolio
selectionmethods can lead to completely di�erent portfolios than theMVP, hence be suboptimal in the sense
of varianceminimization. In other words, both concepts are truly di�erent from a purely algebraic viewpoint.
This makes clear that the persistent evidence for such relations in market data depends critically on the spe-
cial structure of the observed data. We further attempt to identify which special structure of the correlation
matrix might cause a relation between centrality and MVP weights.

3.1 MVP and eigenvector centrality

We �rst consider a possible relation between eigenvector centrality and MVP weights, which can be ap-
proached from the viewpoint of matrix algebra, cf. [30]. By means of an eigenvalue decomposition of the
correlation matrix Ω, the MVP associated with the covariance matrix Σ = diag(

√
Σ
ii

)Ω diag(
√
Σ
ii

) can be
rewritten as follows:

x̄(Σ) = diag(1/
√
Σ
ii

)
1TΣ−11

( d∑
k=1

1
λ
k

v
k
v

T

k

)
diag(1/

√
Σ
ii

)1, (1)

where λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of Ω with associated orthonormal basis of eigenvectors
v1, . . . , vd.
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In the de�nition of eigenvector centrality, the entries of the dominant eigenvector associated with the
adjacency matrix A of an unweighted connected graph are non-negative and allow to be interpreted as mea-
surements of centrality. However, [30] consider the weighted graph G

w
(Ω) derived from a correlation matrix

and relax the notion of eigenvector centrality in an intuitive, but algebraically questionable way. They con-
sider the entries of the dominant eigenvector v1 of Ω (instead of A) as measurements of centrality in G

w
(Ω),

although these entries need not be non-negative. In fact, [4] show that, considering purely random correla-
tion matrices, they typically are not all non-negative. This renders the interpretation of the entries of v1(Ω)
as measurements of centrality less intuitive. However, a major percentage of empirical correlation matrices
exhibits a dominant eigenvector with non-negative entries, and according to [4], this percentage has been
constantly growing. We are able to con�rm this �nding in our data set described in Section 3.3 consisting of
395 CDS time series: When considering the correlation matrices of randomly chosen portfolios of 20 assets,
over 99.9% exhibited dominant eigenvectors with only non-negative entries.

[30] represent the minimum variance portfolio (1) as the sum of three parts:

x̄(Σ) = diag(1/
√
Σ
ii

)
1TΣ−11

(
I + N + R

)
,

I =


1√
Σ11
...
1√
Σ
dd

 , N =
( 1
λ1
− 1
)

(vT1 I)v1, R =
d∑
k=2

( 1
λ
k

− 1
)

(vT
k
I)v

k
.

The term I is interpreted as individual performance part, because its i-th entry is decreasing in the volatility√
Σ
ii
of asset i, while the term N is interpreted as containing information about the location of asset i in the

network, and R is a remainder part. In their Corollary 1, from this representation [30] draw the conclusion
that under the conditions

λ1 > 1 and vT1 I > 0, (2)

non-central assets in G
w

(Ω) receive large weights in the minimum variance portfolio.
The given conditions (2) are introducedpurely for technical reasons, namely to ensure thatN has negative

entries and the centrality measurements in v1 enter the MVP with negative sign. It is important to note, how-
ever, since the eigenvalues of a correlation matrix sum up to its dimension, that λ1 > 1 holds almost surely.
The only possible case of λ1 ≤ 1 is λ1 = . . . = λ

d
= 1, which corresponds to having the identity as correlation

matrix, and almost surely never happens. The condition vT1 I > 0 is also ful�lled for almost all correlation
matrices: If vT1 I < 0, it su�ces to take −v1 instead of v1. This, too, is an eigenvector corresponding to the
largest eigenvalue, and orthogonal to all others. Further, the mere fact that this condition holds true does not
ensure a connection between low eigenvector centrality and highMVPweights, as can be shown bymeans of
a Monte Carlo study as described in the sequel: The set C

d
of all correlation matrices is compact, when con-

sidered as a subset ofRd(d−1)/2. [10, 18] present e�cient methods to simulate from the uniform distribution
on C

d
, denoted U(C

d
) in the sequel. Intuitively, a realization of a correlation matrix Ω ∼ U(C

d
) is completely

random in the sense that no knowledge about the structure of Ω is taken into account and each element of
C
d
is equally likely to be a realization. We consider MVPs constructed from Σ = Ω, where Ω ∼ U(C

d
), which

ful�ll the above conditions, and are interested in the quantity

e
d

(Ω) := portfolio weight of the 20% least central assets
0.2 .

The numerator of e
d
is the sum of the MVP weights assigned to the 20% least central assets according to

[30]’s version of eigenvector centrality. If the centrality measurements did not play a role in the construction
of the MVP, we would expect that these assets get assigned a total weight of about 20% (since MVP weights
sum up to 1), so the denominator is chosen in order to normalize e

d
. A value of e

d
> 1 thus indicates an

overrepresentation of the 20% least central assets in the MVP. Figure 2 visualizes the density of e
d

(Ω) as a
histogram of its law based on n = 1, 000, 000 independent simulations. We �nd indeed that there is a large
probability P(e

d
> 1) for overrepresentation of the 20% least central assets, con�rming [30]’s result where
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they regress MVP weights on centrality measurements and �nd a signi�cant negative relation. However, in
all considered dimensions d there exists a nonempty set of correlation matrices that ful�ll [30]’s technical
conditions, and yet exhibit an underrepresentation of the 20% least central assets in the MVP. Moreover, the
probability of underweighting these assets in theMVP increaseswith the dimension of the correlationmatrix,
cf. Figure 2 and Table 5.
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Figure 2: Histogram of the probability distribution of e
d

(Ω) with Ω ∼ U(C
d

) based on n = 1, 000, 000 simulations, for
d ∈ {5, 10, 50, 100}. The vertical, red line gives the mean, and the blue line represents the border 1 between over- and un-
derrepresentation of the non-central assets.

[30] do not discuss the in�uence of the remainder term R in their decomposition of the MVP, which can
be quite large and indeed o�set the in�uence of the network centrality related part N, as we illustrate in
Example 1 below. Indeed, according to [15], ‘the composition of the least risky portfolio has a large weight on
the eigenvectors with the smallest eigenvalues’, as can be adumbrated also from the formulas for R and N,
which contain the eigenvalues in the denominator.

Example 1 (An example in d = 5). Consider the 5-dimensional correlation matrix

Σ = Ω =


1 0.2 0.4 0.1 −0.3

0.2 1 0.4 0.1 −0.1
0.4 0.4 1 −0.7 −0.2
0.1 0.1 −0.7 1 0
−0.3 −0.1 −0.2 0 1

 .
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It can easily be checked numerically that Ω is positive de�nite and has leading eigenvalue λ1 = 1.9646. The
corresponding eigenvector is

v1 = (0.4035, 0.3517, 0.6737, −0.4106, −0.3016)T ,

and the condition vT1 I = vT1 1 > 0 is ful�lled. The MVP x̄ = x̄(Σ) is given and decomposed as

x̄ =


−0.1466
−0.1828
0.6299
0.5548
0.1446

 = 0.0809




1
1
1
1
1


︸︷︷︸
I

+


−0.1420
−0.1238
−0.2371
0.1445
0.1062


︸ ︷︷ ︸

N

+


−2.6701
−3.1353
7.0234
5.7131
0.6816


︸ ︷︷ ︸

R


.

It is observed that the largest weight in the MVP is assigned to asset 3, the most central asset according to the

entries of the �rst eigenvector, as the remainder part R o�sets the negative in�uence of the centrality measure-

ments in part N.

Remark 1 (Further related work). Many authors argue that the (normalized) dominant eigenvector, i.e. the
eigenvector corresponding to the largest eigenvalue, of the correlation matrix Ω of stock returns provides
a reasonable proxy for the so-called market portfolio; see the references in [4]. The i-th component of the
latter by de�nition equals the market share of asset i (among the d assets considered). The market portfolio
plays an important role in Markowitz theory and the capital asset pricing model (CAPM). According to the
mean-variance tautology in Roll’s critique, cf. [35], the market portfolio lies on the e�cient frontier (i.e. it is
mean-variance e�cient) if and only if the CAPM holds. This means that under the assumption of the CAPM
framework, the market portfolio is mean-variance e�cient in the sense of Markowitz. Apparently the market
portfolio has non-negative components, while the dominant eigenvector of an arbitrary correlation matrix
can have negative components, see [4] for examples and a thorough investigation of this issue. This shows
that the dominant eigenvector in general is not equal to themarket portfolio, and the aforementioned�ndings
are merely approximations that work well empirically.

3.2 MVP and MST

The arguments presented in the previous section already raise �rst doubts regarding a fundamental relation
between centrality on a graph associated with the covariance matrix and the corresponding MVP weights.
Whereas we have just dealt with a ‘weighted’ centrality measure on the complete graph G

w
(Σ), in the follow-

ing we will focus on leaves and closeness centrality on the associated MST. Empirical �ndings are in favor of
an existing relation between MST and MVP. Based on historical data, [29, 33] �nd that non-central assets in
MST(Ω) dominate Markowitz-optimal portfolios. For instance, it is claimed that ‘the companies of the mini-
mum risk Markowitz portfolio [MVP] are always located on the outer leaves of the [minimum spanning] tree’,
cf. [29, p. 1].

The following lemma shows that at least in the simplest case d = 3 there is a fundamental relation be-
tween MVP weights and the MST, if variances are ignored and only a correlation matrix is considered. Notice
that the statement remains valid also for covariancematrices as long as all their diagonal entries are identical.

Lemma 1 (MVP and MST for d = 3). Consider a 3 × 3 correlation matrix Ω ∈ C3.

(a) The MVP associated with the matrix Σ = Ω is x̄ = (x̄1, x̄2, x̄3)T , where

x̄
i

:= (1 − Ω
jk

)(1 + Ω
jk
− Ω

ij
− Ω

ik
)

D

,

with (i, j, k) some permutation of (1, 2, 3),
D := 4 (1 − Ω13) (1 − Ω23) − (1 + Ω12 − Ω23 − Ω13)2.
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(b) Let T be anMST associatedwith Ω, computed fromG
w

(Ω) with a decreasing weight function w. The unique³

central vertex of T corresponds to theminimumweight in theMVP.More formally, letting {1, 2, 3} = {i, j, k},
if Ω

ij
= min{Ω12, Ω13, Ω23}, then x̄k = min{x̄1, x̄2, x̄3}.

Proof.

(a) Tedious but straightforward computation.
(b) By symmetry, it su�ces to verify the statement for k = 3, i.e. we may assume w.l.o.g. that Ω12 is the smallest

entry of Ω. We also assume w.l.o.g. that Ω23 ≥ Ω13 (the opposite case is treated symmetrically). We have
to show (i) x̄3 ≤ x̄2 and (ii) x̄3 ≤ x̄1. Using part (a) and some basic algebra, the inequality (i) is seen to be
equivalent to

Ω13
(
Ω13 − (1 + Ω23)

)
≤ Ω12

(
Ω12 − (1 + Ω23)

)
. (3)

The function f23(u) := u (u − (1 + Ω23)) is a parabola with global minimum at u23 := (1 + Ω23)/2. Since
Ω12 ≤ Ω13 ≤ u23 by assumption, it follows that f23(Ω12) ≥ f23(Ω13), which is equivalent to (3), hence to (i).
Using part (a) and some basic algebra, the inequality (ii) is seen to be equivalent to

Ω23
(
Ω23 − (1 + Ω13)

)
≤ Ω12

(
Ω12 − (1 + Ω13)

)
. (4)

The function f13(u) := u (u − (1 + Ω13)) is a parabola with global minimum at u13 := (1 + Ω13)/2. In order
to verify (ii), it su�ces to verify (4), which is equivalent to showing f13(Ω12) ≥ f13(Ω23). If Ω23 ≤ u13, the
assertion follows precisely as in the previous case (i). If not, then we have Ω12 ≤ u13 < Ω23. Since f13 is a
parabola, the assertion holds true if and only if Ω23 − u13 ≤ u13 − Ω12. The last inequality is equivalent to
Ω23−1 ≤ Ω13−Ω12, which is true since the left-hand side is non-positive and the right-hand side non-negative
by assumption.

A statement similar to the one of Lemma 1(b), algebraically hard-coding a relation between centrality in
MST(Ω) and weights in MVP(Ω), becomes more di�cult to obtain in larger dimensions, as the following Ex-
ample 2 shows in d = 5.

Example 2 (Non-centrality in MST ≠ large weight in MVP). Consider the 5-dimensional correlation matrix of

Example 1, whose MVP is given by

x̄ = (−0.1466, −0.1828, 0.6299, 0.5548, 0.1446)T .

In particular, the assets 3 and 4 have by far the largest weights in the MVP. However, it is readily checked that

none of these two assets is a leaf in any MST associated with Ω. There is an MST with leaves 1 and 5, and an

MST with leaves 2 and 5.

While Example 2 shows that there exist correlation matrices for which the dominating constituents of the
MVP form a subset of assets disjoint from the subset of leaves in an associated MST, it is natural to ask how
many correlation matrices of this type do exist, i.e. how pathological Example 2 is. For a given dimension
d ≥ 2 this question can be answered by means of a Monte Carlo study similarly as in Section 3.1. Recall that
all entries of Ω ∼ U(C

d
) are almost surely mutually distinct, so there is a unique minimum spanning tree

MST(Ω) of G
w

(Ω), with w a decreasing weight function. We denote by |B| the cardinality of a �nite set B and
by L(Ω) the set of all leaves of MST(Ω), and are interested in the random variable

f
d

(Ω) := portfolio weight of L(Ω) in MVP(Ω)
|L(Ω)|/d , Ω ∼ U(C

d
).

3 In the case d = 3 the two leaves i and j of an MST are obviously such that Ω
ij
is the minimal entry of Ω. The MST is unique if

this minimal entry is unique.
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The numerator of f
d

(Ω) gives the MVP-weight of the leaves in MST(Ω), while the denominator gives the
share of leaves of MST(Ω) in all d assets. Intuitively, f

d
(Ω) is > 1 (< 1) if and only if the leaves are over-

(under-) represented in the MVP. Figure 3 visualizes the density of f
d

(Ω) in terms of a histogram for the
law of f

d
(Ω) based on n = 1, 000, 000 independent simulations. It is observed that the mean of f

d
(Ω)

is indeed greater than 1, indicating that there are more correlation matrices overweighting the leaves in
MVP(Ω) than underweighting them. However, with increasing dimension d the mean E[f

d
(Ω)] decreases

and the probability of underweight P(f
d

(Ω) < 1) increases. This suggests that there is not really a strong
relation between MVP(Ω) and MST(Ω) for large d, unless one knows something about the structure of the
correlation matrix which rules out certain subsets of C

d
. Indeed, there exist many correlation matrices that

even underweight the leaves of MST(Ω) in MVP(Ω).
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Figure 3: Histogram of the probability distribution of f
d

(Ω) with Ω ∼ U(C
d

) based on n = 1, 000, 000 simulations, for
d ∈ {5, 10, 50, 100}. The vertical, red line gives the mean, and the blue line represents the border 1 between over- and un-
derrepresentation of the leaves.

We have seen that there is a huge number of correlation matrices, for which the associated MVP is dom-
inated by non-leaf assets. A related, but clearly much weaker question is, whether there exists at least one
leaf which is overweighted in the MVP. To this end, instead of f

d
(Ω), we repeat the analysis above with the

random variable

g
d

(Ω) := max
B⊂L(Ω)

{portfolio weight of B in MVP(Ω)
|B|/d

}
, Ω ∼ U(C

d
).

Table 1 shows that the answer to this question is by far more a�rmative, i.e. for almost every correlation
matrix there is at least one leaf prominently represented in the MVP, and for d ≥ 50 this statement becomes
practically certain. Recall that this statement is universal, i.e. follows from the structure of C

d
and has
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nothing to do with empirical data.

Table 1:Mean of the probability distribution of g
d

(Ω) and probability that no subset of leaves is overweighted in the MVP, with
Ω ∼ U(C

d
) based on n = 1, 000, 000 simulations, for d ∈ {5, 10, 50, 100}.

d = 5 d = 10 d = 50 d = 100
E[g

d
(Ω)] 2.39 3.59 11.07 17.47

P(g
d

(Ω) < 1) 2.29% 1.54% 0.00% 0.00%

Instead of just focusing on leaves, [29] use the more sophisticated concept of mean occupation layer in-
troduced in Section 2 to relate centrality in MST(Ω) and the associated MVP weights: Choosing the central
vertex r(Ω) such that themean occupation layer `(Ω) is minimized, and associating each vertex vwith a layer
L(r(Ω), v, Ω) corresponding to the length of the unique MST(Ω)-path connecting this vertex with the central
one, they �nd that theMVP-weighted portfolio layer

d∑
v=1

x̄
v
(Σ)L

(
r(Ω), v, Ω

)
is larger than themean occupation layer `(Ω). In words, this means that theMVP assignsmore weight to non-
central assets than an equally-weighted basket does (i.e. more weight on non-central assets than on central
ones). To analyze this �nding, we also consider the following two random variables, with O(Ω) denoting the
subset of L(Ω) consisting only of the leaves v ∈ L(Ω) with maximal length L

(
r(Ω), v, Ω

)
(we call them outer

leaves):

h
d

(Ω) :=
∑

d

v=1 x̄v(Ω)L
(
r(Ω), v, Ω

)
`(Ω) ,

i
d

(Ω) := portfolio weight of O(Ω) in MVP(Ω)
|O(Ω)|/d , Ω ∼ U(C

d
).

Again, a fundamental relation can not be detected, as shown in Figure 4 and Tables 2 and 5: While for a
lower number of assets the probability of overweighting non-central assets, resp. outer leaves, in the MVP is
substantial, this �nding is not persistent for larger dimensions. For portfolios consisting of 100 assets, only
in about half of the cases non-central assets, resp. outer leaves, are dominating the MVP.

3.3 Empirical results from CDS portfolios

In the light of our previous analyses, we conclude that the strong relations between non-centrality in a graph
and an MVP, both associated with the correlation matrix Ω, as observed by [13, 29, 30, 33] are not inner-
mathematical, but purely data-dependent. Looking at historical data of credit default swaps (CDS), we are
able to con�rm this suspicion: We �nd that large portfolios tend to exhibit a strong overweighting of non-
central assets. Portfolios underweighting non-central assets are only found for small to moderate portfolio

Table 2:Mean of the probability distribution of i
d

(Ω) and probability of underweighting outer leaves, with Ω ∼ U(C
d

) based on
n = 1, 000, 000 simulations, for d ∈ {5, 10, 50, 100}.

d = 5 d = 10 d = 50 d = 100
E[i

d
(Ω)] 1.54 1.51 1.34 1.30

P(i
d

(Ω) < 1) 20.19% 33.89% 45.74% 47.55%
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Figure 4: Histogram of the probability distribution of h
d

(Ω) with Ω ∼ U(C
d

) based on n = 1, 000, 000 simulations, for
d ∈ {5, 10, 50, 100}. The vertical, red line gives the mean, and the blue line represents the border 1 between over- and un-
derrepresentation of the non-central assets.

sizes. Our data set⁴ consists of 5Y-CDS mid upfront time series of the constituents of the four major credit in-
dices, namely ITRX EUR, ITRX XO, CDX IG, and CDX HY, observed daily from July 30, 2015 to May 2, 2017. For
each asset we consider the trading strategy of selling 5Y CDS protection. Notice that CDS maturities are stan-
dardized to be always on 20 June or 20 December of a year. Furthermore, the observedmarket price (=upfront)
of a 5Y CDS switches from the CDS with maturity in June (December) to the one with maturity in December of
the same year (June of the next year) on 20 September (20 March). On these CDS roll dates 20 March and 20
September the trading strategy closes out the old CDS and rolls into the new one, in order to be in accordance
with the observed market prices and to keep the duration of the CDS as constant as possible over time. If u

t

denotes the upfront of a CDS on day t, we de�ne the log-return at the next day t + 1 by log
(

1−u
t+1

1−u
t

)
. This is

because the value 1− u
t
, sometimes called the bond-equivalent value of the CDS, can be considered the value

of the investment at time t. Clearly, −u
t
is the value of the CDS, but the amount 1 needs to be held in cash

because it is at stake in case of a potential credit event at t, followed by a CDS auction yielding zero recovery

4 Source: ICE Data Services.



Portfolio selection based on graphs: Does it align with Markowitz-optimal portfolios? | 75

rate.⁵ After deleting series with missing data, we are left with 395 assets. We study the quantities

ẽ
d

(Σ) := portfolio weight of 20% least Ω-eigenvector-central assets in MVP(Σ)
0.2

f̃
d

(Σ) := portfolio weight of L(Ω) in MVP(Σ)
|L(Ω)|/d ,

h̃
d

(Σ) :=
∑

d

v=1 x̄v(Σ)L
(
r(Ω), v, Ω

)
`(Ω) ,

for each of the four indices, where d is the number of assets of the respective index included in our data
set. Here, Σ refers to the covariance matrix of the considered CDS investment log-return time series, Ω is the
correlation matrix associated with Σ, and x̄ are the MVP weights calculated from Σ. Table 3 shows that ẽ

d
(Σ),

f̃
d

(Σ) and h̃
d

(Σ) are larger than 1 for all four indices, thus indicating an overweighting of leaves, respectively
non-central assets according to both the mean occupation layer criterion and [30]’s eigenvector centrality.
It is worth noting that all indices do not only ful�ll the plausible conditions of [30], but also the way more
restrictive condition that the �rst eigenvector has only non-negative components.

Table 3: In all major credit indices we detect a systematic overweighting of leaves resp. non-central assets in the MVP. The
number of constituents of these indices (after deleting series with missing data) is given in the rightmost column.

ẽ
d

(Σ) f̃
d

(Σ) h̃
d

(Σ) constituents
ITRX EUR 3.11 2.56 1.35 123
ITRX XO 1.57 1.58 1.07 64
CDX IG 3.09 1.70 1.23 123
CDX HY 1.89 1.86 1.20 85

To get a more profound impression, we further calculate ẽ
d

(Σ), f̃
d

(Σ) and h̃
d

(Σ) for n = 1, 000, 000 ran-
dom drawings of d = 20 assets out of our pool comprising 395 �rms. There are

(395
d

)
≈ 2.1547 ·1033 possibil-

ities, so enough that the probability of choosing the same set twice is negligible. Unlike the aforementioned
references and Table 3, we cannot con�rm a systematic overweighting of non-central assets for arbitrary bas-
kets of CDS, cf. Figure 5. A signi�cant number of the randomly chosen portfolios exhibits an underweighting
of leaves, respectively peripheral assets. An example is given in Table 4.
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Figure 5: Histograms of the probability distributions of ẽ20(Σ) (left), f̃20(Σ) (middle) and h̃20(Σ) (right) with Σ being the covari-
ance matrix of 20 randomly chosen CDS upfront time series out of the 395 considered entities. The vertical, red lines give the
respective mean, and the blue lines represent again the border 1 between over- and underrepresentation of non-central assets.

5 If this value was not held in cash, the investment must be considered levered, which we do not.
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Table 4: The following portfolio exhibits a systematic underweighting of leaves, respectively peripheral assets, in the consid-
ered time period: ẽ

d
(Σ) = 0.2392, f̃

d
(Σ) = 0.8847, h̃

d
(Σ) = 0.8777.

�rm MVP-weight MST-layer v1
Centrica 0.0796 1 0.2754
Halliburton 0.0151 3 0.1994
DISH DBS -0.0336 2 0.2361
Koninklijke Ahold Delhaize 0.2249 1 0.2568
Whirlpool 0.0453 3 0.2113
Meritor -0.0191 2 0.2069
Quest Diagnostics 0.3829 3 0.2065
BMW -0.0090 2 0.2308
AirFrance-KLM -0.0129 2 0.2044
Gas Natural -0.0971 0 0.2795
Danone 0.2307 1 0.2263
Orange 0.2481 1 0.2623
Ziggo Bond Finance -0.0389 1 0.2548
Best Buy -0.0266 4 0.2074
Lincoln National 0.0078 1 0.1809
Deutsche Lufthansa -0.0034 2 0.2314
Newmont Mining 0.0170 4 0.0387
Stena -0.0162 2 0.2620
Astaldi -0.0026 3 0.2118
Nordstrom 0.0079 5 0.1739

However, for increasing dimension, the probability of �nding an overweighting of non-central assets
increases, cf. Figure 7 and Table 5. This aligns with the results of [29, 30, 33], who study data sets of 200, 300,
and 477 stocks, respectively, and with our previous observations for the four major credit indices.

3.4 Influence of structures of observed correlation matrices

The persistence of the empirical �nding that there is indeed a strong relation between non-centrality in
the MST and comparatively large MVP weights indicates that large �nancial return data sets have a special
covariance/correlation structure. An interesting line of research is to identify the features of covariance resp.
correlation matrices that cause this relation. There are mainly two di�erent strands of research concerned
with the special structure of market correlation matrices: One strand approaches the problem by investi-
gating corresponding graph structures, e.g. [2, 36], the other utilizes results from random matrix theory to
assess the degree of randomness in a given empirical correlation matrix, e.g. [3, 5, 15, 31, 32].

In the following, we brie�y summarize stylized facts observed in market correlation matrices:
1. Large �rst eigenvalue

Considering the spectrum, random matrix theory predicts a certain range [λ−, λ+] and density f
λ
for the

eigenvalues of a random correlation matrix constructed from data matrices with iid entries⁶, which is
usually violated by the eigenvalues of market correlation matrices. The largest empirical eigenvalues lie
well above the theoretical upper bound λ+, cf. [3, 5, 15, 31, 32].
In our data set, we �nd that the �rst eigenvalue explains about 40% of the variance: 47% in d = 5,

6 These bounds and the density are dependent on the ratio of the number of simulated time series to their length.
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declining in d to 37% in d = 50. Correlation matrices simulated fromU(C
d

) however fail to produce such
large �rst eigenvalues in our simulations. Regardless of the dimension d of the simulated correlation
matrix, its eigenvalues almost all lie in the interval [0,4], with eigenvalues larger than 6 never observed
in d = 5, 10, 50, 100 in n = 1, 000, 000 simulations.

2. Perron-Frobenius property
As already mentioned in Section 3.1, [4] observe in a data set of S&P1500 stocks that the major percent-
age of market correlation matrices exhibits a dominant eigenvector with only positive entries, and this
percentage has been increasing up to 100% in their considered time period from 1994 to 2013. Indeed,
also in our data set, more than 99.9% of correlation matrices (d = 20, n = 1, 000, 000 simulations) have
this property.
When simulating from U(C

d
) however, correlation matrices with the Perron-Frobenius property are re-

alized with a very small probability, which declines to zero quickly with growing dimension, cf. [4]: In
d = 5, about 6% of the correlation matrices simulated according to U(C5) have the Perron-Frobenius
property, in contrast to about 0.8% in d = 8.

3. Distribution of pairwise correlations is signi�cantly shifted to the positive
[14, 31] �nd that the distribution of pairwise correlations, i.e. the o�-diagonal entries ofmarket correlation
matrices, displays a positive mean, as opposed to the Beta(d/2, d/2)-distribution on [−1, 1] of Ω

ij
when

Ω ∼ U(C
d

), cf. [18], which hasmean 0.We are able to con�rm these observations in our data set: Drawing
n = 1, 000, 000 portfolios in di�erent dimensions ranging from d = 5 to d = 50, the mean of pairwise
correlations is always positive, and on average equal to 0.33. Figure 6 contrasts the histogram of pairwise
correlations in our market of 395 assets to that of a random correlation matrix of the same size drawn
from U(C

d
).

4. Scale-free property of the corresponding MST
[2, 36] investigate MSTs constructed on �nancial correlation matrices, and �nd that these MSTs exhibit
the special structure of a so-called scale-free graph, which corresponds by de�nition to a power-law type
degree distribution. This also results in amuch higher probability of observing nodes with a high degree,
i.e. a large number of neighbors, in contrast to random treeswhere this probability decayswith increasing
number of vertices, cf. [36]. Correspondingly, in scale-free trees one also observes more leaves, as the
sum over the degrees of all vertices is �xed and the nodes with high degree already ’use up’ a signi�cant
portion of this capacity.⁷
This �nding can already be con�rmed in comparatively small portfolios of 20 assets: We compare the
number of leaves encountered in n = 1, 000, 000 simulations of MSTs from random correlation matrices
Ω ∼ U(C20)with thenumber of leaves encountered in the samenumber ofMSTs fromcorrelationmatrices
of 20 randomly drawn assets from our data pool, and �nd that MSTs based on market data exhibit in
general a higher number of leaves, cf. Figure 6.

Considering the in�uence of these stylized facts on our quantities e
d
, f
d
, h

d
, it is hard to anticipate which of

these features triggers the completely di�erent behavior of e
d
in market and random correlation matrices.

For f
d
, the scale-free graph structure of empirical correlation matrices implies that the denominator is larger

than in the simulated case. However, as we typically observe f
d

> 1 for empirical correlation matrices,
there must be an even stronger in�uence on the MVP weights that counters the in�uence of the higher
portion of leaves. To analyze possible e�ects of the stylized facts on h

d
, we �rst observe that the more leaves

a tree structure on d nodes has, the smaller we expect its mean occupation layer to be. This expectation
is extrapolated from observations of low-dimensional tree structures. Clearly a ‘chain-like’ graph has the
highest mean occupation layer (with values d(d + 1)/(2d + 1) for an odd number d of vertices, resp. d/2
for an even number of vertices), and a ‘star-like’ graph has the lowest possible mean occupation layer with
value (d − 1)/d. Therefore, the denominator is smaller in the empirical case, leading to a higher value of h

d
.

7 [1] argue that this behaviour originates in a growing network with preferential attachment, i.e. new nodes are more likely to
attach to highly connected nodes in the existing network, an interpretation that seems intuitive in a �nancial context. (Note that
there exist other generating mechanisms that may result in a scale-free network.)
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Figure 6: Left: Number of leaves encountered in uniformly simulated (black) vs. CDS data-based (gray) MSTs. Right: Standard-
ized frequencies of the o�-diagonal elements of a uniformly simulated (black) and our market correlation matrix (gray). The
latter is signi�cantly shifted to the right.

As in the quantity f
d
, the numerator is a�ected both by MVP weights and graph structure. As we observe a

higher value of h
d
in the empirical case, higher MVP weights on the outskirts of the network compensate for

the overall shortening of paths from the central node to the other nodes.

To analyze the e�ect of the observed features 1.-4. on the quantities e
d
, f
d
, h

d
inmore detail, the previous

Monte Carlo studies should be rerun using simulation algorithms that are able to produce correlation matri-
ces that display only a subset of these stylized facts, as opposed to completely random correlation matrices
(which display none of them) and market correlation matrices (which exhibit them all). However, the choice
of available algorithms for this task is limited:
• [7] present an algorithm that generates random correlationmatrices with speci�ed eigenvalues.We rerun

our simulation study using this algorithm, combined with a realistic distribution for the eigenvalues, cf.
Paragraph 3.4.1.

• Whereas there are some references that generate factor models (typically displaying stylized facts 1.-3.,
but not 4., at least in the one-factor case, cf. [2]), e.g. [6, 9], these papers rely strongly on speci�c charac-
teristics of the market the authors are considering, and thus do not qualify as completely random real-
izations of correlation matrices exhibiting properties 1.-3. Nevertheless, to gain some insight in whether
such correlation matrices may yield a relation between centrality measurements and MVP weights, we
rerun our simulation study with one- and 3-factor model correlation matrices, cf. Paragraph 3.4.2.

• To the best of our knowledge, there is no algorithm available for the generation of reasonably random
correlation matrices with the Perron-Frobenius property. [11] present an algorithm for the generation of
covariancematrices whose diagonal, resp. o�-diagonal elements follow a distributionwith speci�edmo-
ments. However, this algorithm is not readily adaptable to the generation of correlation matrices with
o�-diagonal entries with speci�ed moments. Concerning the generation of correlation matrices whose
MSTs exhibit the scale-free property, to the best of our knowledge there is no algorithm available, and
due to the generating mechanism of the MST we expect the task of �nding such correlation matrices to
be highly complex.

3.4.1 Correlation matrices with a realistic eigenvalue structure

Using the algorithm of [7], which is implemented inMatlab as gallery(’randcorr’,...), we are able to an-
alyze the in�uence of the presence of a large �rst eigenvalue. For dimensions d = 5, 10, 50, 100, we generate
n = 1, 000, 000 simulations of eigenvalues (λ1, . . . , λd), where we �x the �rst eigenvalue λ1 = 0.4 · d, ac-
cording to the typical size of the �rst eigenvalue in random portfolios drawn from our data set, and simulate
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λ2, . . . , λd according to the density

f
Ω

(λ) = 2
(λ + 1)3 , (5)

and rescale in order to cover the remaining 60% of total variance. This is a special form of the power-law type
density given in [3, 5], which is found to capture the distribution of the bulk of eigenvalues of market corre-
lation matrices fairly well.⁸ An arti�cial spectrum simulated in this way is very similar to the observed spec-
trum of an arbitrary correlation matrix from our data set. In the next step, we generate for each (λ1, . . . , λd)
a random correlation matrix having this particular spectrum according to the algorithm by [7], and calculate
e
d
, f
d
, h

d
. This procedure is able to reproduce stylized fact 1., but not the others: Similar toU(C

d
) the percent-

age of simulated correlation matrices with the Perron-Frobenius property is small and decreases fast with
increasing dimension d. Pairwise correlation entries have a bimodal distribution, symmetric about 0, with
mean close to 0. The histogram of leaves for MSTs of correlation matrices with these realistically simulated
eigenvalues looks very similar to that obtained from the uniform distribution, so on average graphs derived
from correlation matrices simulated from this algorithm exhibit a lot fewer leaves than those derived from
market correlation matrices, which hints at stylized fact 4. also not being present. The results show that just
the fact of displaying a realistically large �rst eigenvalue with a realistic distribution of the spectrum is not
enough to explain the empirically observed relation between graph centrality and MVP weights. As for uni-
formly random simulated correlationmatrices, the percentage of correlationmatrices simulated according to
the algorithm by [7] that exhibit a signi�cant overweighting of central assets grows with dimension d, con-
trary to market correlation matrices where this percentage declines with d, cf. Figure 7 and Table 5. Similar
results were obtained when simulating for each dimension a �xed spectrum according to (5), and generating
n random correlation matrices with this �xed spectrum.

3.4.2 Factor model correlation matrices

Following amethodology similar to Fan et al. [9, Section4],we simulate correlationmatrices corresponding to
a one-factor model. The distributional characteristics of the parameters are obtained from a �t of a one-factor
model to our data set described in Section 3.3:

X
i
(t) = b

i
M(t) + ϵ

i
(t),

where M denotes the market factor (as a proxy we choose an equally weighted portfolio of all assets),
X
i
, i = 1, . . . , 395, is the i-th time series in our data set, b

i
its factor loading, and ϵ

i
the associated time

series of errors. We �nd that the factor loadings b
i
and the standard deviations σ

i
of the error terms ϵ

i
are

both approximately gamma distributed, with parameters α
b

= 0.4819, β
b

= 1.6533, and α
σ

= 0.5400,
β
σ

= 0.0052, respectively. In the simulation, the market factor is taken to be normally distributed⁹, with
mean and standard deviation matching the observed values, µ

M
= 4.7 · 10−5, and σ

M
= 0.0018, factor load-

ings and error standard deviations are simulated from the above gamma distributions, and the error time
series are simulated independently from normal distributions with zero mean and the respective simulated
standard deviations. In n = 1, 000, 000 simulations, we obtain d = 5, 10, 50, 100 time series from a factor
model with the above characteristics, and calculate the corresponding (sample) correlation matrices.

The largest eigenvalue of the simulated matrices explains on average about 40% of total variance for
d = 10, 50, 100, and about 45% for d = 5. Contrary to our expectations, correlation matrices simulated from
this one-factor model do not regularly exhibit the stylized fact 2.: The proportion of simulated correlation

8 [3, 5]’s formula relies on the lower bound λ− for the eigenvalues of a random correlation matrix in the sense of random matrix
theory. We set λ− = 0, which conforms to the randommatrix theory limit when the data matrix is N × N and N → ∞.
9 This assumptionwould be questionable if one intends to describe our data set accurately. However, sincewe intend to construct
time series from an arti�cial factor model, �tting the exact distribution of the factor returns is not crucial, and we stick with
normality for the sake of simplicity.
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matriceswithPerron-Frobeniusproperty steadily declines, from62.50% indimension 5 to0.02% indimension
100. The mean of pairwise correlations in our simulations is 0.23 on average, so stylized fact 3. is typically
present. The MSTs associated with the one-factor correlation matrices exhibit on average more leaves than
those obtained from uniformly random correlation matrices, but fewer leaves than those associated with
empirically observed correlation matrices.

Concerning eigenvector centrality, the MVPs related to the simulated factor correlation matrices almost
certainly overweight the 20% least central assets, regardless of the number of assets considered, cf. e

d

1-factor in Table 5. Also leaves seem to be consistently overweighted: f
d
is smaller than 1 for only a low

percentage of the simulated correlation matrices, with only a slight growth in dimension. In terms of mean
occupation layer, the probability of underweighting peripheral assets, P(h

d
< 1), grows with dimension,

from 4.11% in dimension 5 to 27.71% in dimension 100. Thus, concerning h
d
, correlation matrices simulated

from this 1-factor model unexpectedly behave similar to correlation matrices simulated uniformly or from
the randcorr algorithm described in Paragraph 3.4.1.

To shed more light on the behavior of the quantities e
d
, f
d
, h

d
for factor models, we repeat our analy-

sis with correlation matrices simulated according to the characteristics described in Fan et al. [9, Section
4]: There, a Fama-French 3-factor model was �t to daily data of 30 stock portfolios obtained from French’s
website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), and fac-
tor loadings were found to approximately follow a trivariate normal distribution, and error standard devia-
tions were found to approximately follow a gamma distribution.

In correlationmatrices simulated from this model, we �nd that stylized facts 1.-3. are present: Regardless
of dimension, over 99% of the simulated correlation matrices exhibit the Perron-Frobenius property, the �rst
eigenvector on average explains more than 60% of total variance, and the distribution of the pairwise cor-
relation entries is shifted to the positive with a mean of 0.61. We further �nd that the MSTs associated with
3-factor correlation matrices typically exhibit more leaves than those associated with empirically observed
correlationmatrices, thus hinting at a denser graph structure than typically exhibited by scale-free trees. This
is in line with [2]’s �nding for one-factor correlation matrices¹⁰.

Concerning the quantities e
d
, f
d
, h

d
, we �nd that regardless of dimension or centrality measure, periph-

eral assets are almost certainly overweighted in the MVPs associated with the 3-factor correlation matrices,
cf. Table 5 and Figure 7.

4 Issues of graph-based asset allocation
Having demonstrated that graph-based portfolio selection mechanisms lack a fundamental connection to
the traditional Markowitz approach, we further want to draw the reader’s attention to potential problems
that may arise in the context of graph-based portfolio selection. On the one hand, the chosen dependence
and centrality measures may heavily in�uence the graph structure and the graph-based portfolio selection;
on the other hand, by just taking into account correlations (or pairwise dependence measures), one loses the
information captured by the marginal distribution of the assets or by higher-order dependence structures.
As a side remark, it is worth noting that certain graphs derived from the correlationmatrix correspond to clus-
tering techniques, e.g. the MST corresponds to single linkage clustering. Issues of clustering-based portfolio
selection have been documented e.g. in [17].

10 [2] simulate correlation matrices from a 1-factor model previously �tted to a large stock data set with the S&P500 index as
market factor.
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Figure 7: Probability of underweight for di�erent types of correlation matrices: uniform, gallery:randcorr, one-and 3-factor, and
empirical.

4.1 Graph structure depends on chosen dependence measure

For graph-based portfolio selection methods, any risk measure can be used for the construction of Σ. The
resulting dependence matrix will be symmetric, and, unlike in the Markowitz setting, positive de�niteness is
not required¹¹ in the selection algorithms. However, one has to keep in mind that di�erent dependence mea-
sures may yield di�erent MSTs, as can be seen from the following toy example:¹² Consider R = (R1, R2, R3),
where R

i
is lognormally distributed with parameters µ

i
= 0 and σ

i
> 0 for i = 1, 2, 3, with σ1 = 0.5, σ2 = 0.5,

and σ3 = 3. The dependence structure ofR is characterized by aGaussian copula parameterized by thematrix 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 ,

with ρ12 = 0.1, ρ13 = 0.4, and ρ23 = 0.8. Spearman’s ρ and Kendall’s τ are given as

ρ
S
(X
i
, X

j
) = 6

π

arcsin
(
ρ
ij

2
)
, τ(X

i
, X

j
) = 2

π

arcsin(ρ
ij

).

11 Although not required, positive de�niteness is a nice-to-have, as in this case the often used correlation distance provides a
pseudometric on the set of considered assets.
12 For anoverviewof the shortcomings of correlation-basedMSTandalternative dependencemeasures proposed in the literature,
see e.g. the review [24].
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Table 5: Probability of underweighting non-central assets in terms of e
d
/f
d
/h
d
, P(e

d
/f
d
/h
d

(Ω) < 1), for di�erent correlation
matrices. Whereas the uniform and randcorr algorithms produce correlation matrices whose probability of underweighting
non-central assets grows with dimension, factor models on the other hand almost certainly overweigh non-central assets.

P(·
d
< 1) d = 5 d = 10 d = 20 d = 50 d = 100

e
d
uniform 8.45% 22.93% - 40.12% 43.57%

e
d
randcorr 9.08% 16.45% - 29.61% 34.45%

e
d
1-factor 0.07% 0.01% - 0% 0%

e
d
3-factor 0% 0% - 0% 0%

e
d
empirical 63.51% 48.21% 33.89% 19.47% -

f
d
uniform 11.42% 21.22% - 33.11% 36.40%

f
d
randcorr 5.79% 26.35% - 46.92% 48.46%

f
d
1-factor 1.73% 1.42% - 2.81% 4.66%

f
d
3-factor 0% 0% - 0% 0%

f
d
empirical 35.18% 28.03% 21.91% 16.10% -

h
d
uniform 10.26% 17.58% - 37.58% 42.58%

h
d
randcorr 6.64% 13.60% - 29.74% 34.55%

h
d
1-factor 4.11% 4.04% - 17.09% 27.71%

h
d
3-factor 0.03% 0.04% - 0% 0%

h
d
empirical 34.56% 33.48% 28.11% 21.78% -

Both are strictly increasing transformations of the ρ
ij
, so from ρ12 < ρ13 < ρ23 it follows ρ

S
(X1, X2) <

ρ
S
(X1, X3) < ρ

S
(X2, X3) and τ(X1, X2) < τ(X1, X3) < τ(X2, X3). On the other hand,

Cor(X1, X3) = (eρ13σ1σ3 − 1)√
(eσ2

1 − 1)(eσ2
3 − 1)

≈ 0.017 < Cor(X2, X3) = (eρ23σ2σ3 − 1)√
(eσ2

2 − 1)(eσ2
3 − 1)

≈ 0.048

< Cor(X1, X2) = (eρ12σ1σ2 − 1)√
(eσ2

1 − 1)(eσ2
2 − 1)

≈ 0.089,

so constructing the MST from (Pearson) correlations results in a di�erent MST than construction from Spear-
man’s ρ or Kendall’s τ, as the central nodes di�er, cf. Figure 8.

X1

X2 X3

X1

X2 X3

Figure 8:MSTs constructed from the di�erent dependence measures using correlation distance as weight function. Left: ρ
S
, τ.

Right: Cor.

In an example with just three nodes, this may seem a minor issue at �rst glance. In practice, however,
di�erent tree structures for di�erent dependencemeasures are often encountered, and the di�erences can be
dramatic, as illustrated in Figure 9: The two MSTs constructed on return data of the SMI index constituents¹³
using correlation resp. Spearman’s ρ matrices in combination with a decreasing weight function are funda-
mentally di�erent. Striking di�erences are e.g. the position of ZURN,which is rather central in the Spearman’s

13 Data from May 2015 to May 2017; Source: Bloomberg.
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ρMST, but is a leaf in the correlation MST, or the branch descending from BAER (UBSG, CSGN, ADEN), which
is located in the center of the correlationMST, but rather peripheral in the Spearman’s ρMST. Table 6 presents
the eigenvalues of the correlation resp. Spearman’s ρ matrices, which di�er only marginally, thus indicating
that the two matrices are quite similar. The di�erent tree structure is exclusively inferred by the marginal
distributions of the return time series, which enter the calculation of the correlation coe�cient, but not the
calculation of Spearman’s ρ. Table 6 further shows the annualized volatilities of the time series, indicating
that the marginal distributions are diverse.
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Figure 9:MSTs constructed from return data of the SMI Index constituents. Striking di�erences are for example the respective
positions of ZURN and BAER in the networks.

4.2 Variances matter! And maybe even more matters!

Generally speaking, the ‘performance’ of a portfolio return xTR should be a measurement depending on the
full distribution of R. Only taking into account a partial aspect of the latter distribution bears the risk to
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Table 6: Left: The eigenvalues of the correlation (EV corr.) and Spearman’s ρ (EV rho) matrices indicate that the two matrices
are quite similar. Right: Annualized volatilities of the SMI return time series.

EV corr. EV rho
0.1583 0.1461
0.1759 0.1703
0.2139 0.1900
0.238 0.2292

0.2582 0.2662
0.2756 0.2871
0.2848 0.2976
0.3105 0.3281
0.3654 0.3568
0.3763 0.3824
0.3814 0.4001
0.4133 0.4218
0.4343 0.4368
0.5092 0.4600
0.5668 0.5451
0.6174 0.5836
0.8395 0.8020
1.0862 1.0741
1.4723 1.3879

11.0227 11.2347

�rm vol.
ABB (’ABBN VX’) 0.2046
Adecco Group (’ADEN VX’) 0.2696
Julius Baer Gruppe (’BAER VX’) 0.2777
Cie. Fin. Richemont (’CFR VX’) 0.2737
Credit Suisse Group (’CSGN VX’) 0.3719
Geberit (’GEBN VX’) 0.1874
Givaudan (’GIVN VX’) 0.1874
Lafargeholcim (’LHN VX’) 0.3203
Lonza Group (’LONN VX’) 0.2332
Nestle (’NESN VX’) 0.1597
Novartis (’NOVN VX’) 0.1985
Roche Holding (’ROG VX’) 0.1987
Swisscom (’SCMN VX’) 0.1741
SGS (’SGSN VX’) 0.1727
Swiss Life Holding (’SLHN VX’) 0.2073
Swiss Re (’SREN VX’) 0.1908
Sika (’SYNN VX’) 0.2825
UBS (’UBSG VX’) 0.3101
Swatch Group (’UHR VX’) 0.2769
Zurich (’ZURN VX’) 0.2381

overlook better performing portfolios.¹⁴ Furthermore, if it is necessary to rely only on partial aspects, it is
important to respect the hierarchy of the e�ects of the respective aspects on the result. What does that mean
concretely? The approaches of [29, 33] base portfolio selection only on the correlation matrix Ω of R, whereas
Markowitz portfolio selection relies on the covariance matrix Σ. The information in the covariance matrix
comprises the information in the correlationmatrix, and in addition uses the information about the variances
of themargins. The latter information,which is fully discarded in the selection processes proposed by [29, 33],
has a massive e�ect on diversi�cation when measured in terms of portfolio variance. In particular, if some
components ofR have a variance that is signi�cantly larger than that of others, they are underweighted in the
MVP irrespectively of the correlationmatrix, which only has a secondary e�ect. For example, if the covariance
matrix is

Σ =

100 −0.1 0
−0.1 100 0

0 0 1

 ,
then it is easily seen that the associated MVP assigns most weight to asset 3, simply because it has by far the
smallest variance. However, it is easily checked, cf. Lemma 1(b), that asset 3 is not a leaf in anyMST computed

14 In the clustering literature, [8] make an e�ort to overcome this risk by designing a distance measure that incorporates both
information from the margins and the dependence structure of the assets.
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from the associated correlation matrix

Ω =

 1 −0.001 0
−0.001 1 0

0 0 1

 .
In this arti�cial example, the e�ect of the correlation structure is clearly dominated by the e�ect of the
one-dimensional margins (variances). The MST-based selection process simply overlooks the fact that assets
1 and 2 have a high variance.

Furthermore, all graph-based methods (but also Markowitz’s approach) essentially rely on dependence
informationbetweenbivariate pairs only. Consequently, theymaybeprone to overlook important characteris-
tics of the distribution ofR resulting fromhigher-level dependence structures beyond those observed through
bivariate pair measurements (such as included in Σ). Typically, these e�ects are of secondary importance in
practice, but there are cases in which they do matter, as the following example emphasizes. Consider the
following two stochastic models for R, denoted R(1) and R(2), which both have exactly the same covariance
matrix.
(1) Each R(1)

i

is normally distributed with mean µ = 0.08 and standard deviation σ = 0.3, and the survival
copula of R(1) is given by

C(u1, . . . , ud) = u[1]

d∏
k=2

u

21−k

[k] ,

where u[1] ≤ . . . ≤ u[d] denotes the ordered list of u1, . . . , ud, i.e.

P(R(1)
1 > x1, . . . , R(1)

d

> x
d

) = C
(

1 − Φ
(
x1 − µ
σ

)
, . . . , 1 − Φ

(
x
d
− µ
σ

))
,

where Φ denotes the distribution function of a standard normally distributed random variable.
(2) Each R(2)

i

is normally distributed with mean µ = 0.08 and standard deviation σ = 0.3, and the survival
copula of R(2) is given by

C(u1, . . . , ud) = u[1]

d∏
k=2

u

1
2
[k].

Both copulas are within the family of Lévy-frailty copulas; see [20] for background on the latter, and the stan-
dard textbook [26] for background on copulas in general. Obviously, bothmodels are such that (R(1)

i

, R(1)
j

) has
the same distribution as (R(2)

i

, R(2)
j

), thus both models share the same covariance matrix Σ. All o�-diagonal
elements of Σ are equal, as are all its diagonal entries. Consequently, the MVP x̄ is an equally weighted port-
folio in both cases. Regarding the portfolio derived from anMST, there is complete freedom. One �nds anMST
with k ∈ {2, . . . , d − 1} arbitrary leaves.¹⁵ While this example shows that the MST-based portfolio selection
clearly needs further criteria, how di�erent are the distributions of x̄TR(1) and x̄TR(2)? Figure 10 illustrates
that the variances and means of both portfolio returns are identical, but the shapes of their distributions dif-
fer dramatically. In particular, the secondmodel is negatively skewed and has a signi�cantly larger downside
risk than the �rst.

5 Conclusion
It was demonstrated that there is no signi�cant evidence for an inner-mathematical relation between
Markowitz-optimality and centrality in a graph derived from a random correlation matrix. The intuitive

15 The considered portfolios exhibit constant correlation matrices, i.e. all pairwise correlations are equal. The corresponding
complete graph has the same weight on all edges, thus any of its spanning trees is minimal.
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Figure 10: Visualization of the probability distribution of the MVP for d = 20. Top: model R(1). Bottom: model R(2).

heuristic argument stating that a group of non-central assets in a graph form a well-diversi�ed portfolio in
a Markowitz setting cannot be backed by mathematical arguments for correlation matrices with no special
structure. Consequently, empirical �ndings in this directionmust be considered highly data-dependent. Nev-
ertheless, for large data sets of �nancial asset returns, this �nding is persistent, thus should originate in spe-
ci�c features of the underlying correlation/covariance matrix. It was demonstrated that imposing a realistic
eigenvalue structure (but none of the other features of observed �nancial correlation matrices) on simulated
correlationmatrices could not produce a relation between graph-centrality andMarkowitz portfolio weights.
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