Abstract
We derive a new (lower) inequality between Kendall’s τ and Spearman’s ρ for two-dimensional Extreme-Value Copulas, show that this inequality is sharp in each point and conclude that the comonotonic and the product copula are the only Extreme-Value Copulas for which the well-known lower Hutchinson-Lai inequality is sharp.
References
[1] Daniels, H. E. (1950). Rank correlation and population models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 12(2), 171-181.10.1111/j.2517-6161.1950.tb00054.xSearch in Google Scholar
[2] Durbin, J. and A. Stuart (1951). Inversions and rank correlation coefficients. J. R. Stat. Soc. Ser. B. Stat. Methodol. 13(2), 303-309.10.1111/j.2517-6161.1951.tb00095.xSearch in Google Scholar
[3] de Haan, L. and S. I. Resnick (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40(4), 317-337.10.1007/BF00533086Search in Google Scholar
[4] Durante, F. and C. Sempi (2016). Principles of Copula Theory. CRC Press, Boca Raton FL.Search in Google Scholar
[5] Fredricks, G. A. and R. B. Nelsen (2007). On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables. J. Statist. Plann. Infererence 137(7), 2143-2150.10.1016/j.jspi.2006.06.045Search in Google Scholar
[6] Hürlimann,W. (2003). Hutchinson-Lai’s conjecture for bivariate extreme value copulas. Statist. Probab. Lett. 61(2), 191-198.10.1016/S0167-7152(02)00349-8Search in Google Scholar
[7] Hutchinson, T. P. and C. D. Lai (1990). Continuous Bivariate Distributions, Emphasising Applications. Rumsby, Adelaide.Search in Google Scholar
[8] Kamnitui, N., C. Genest, P. Jaworski, and W. Trutschnig (2018). On the size of the class of bivariate Extreme-Value copulas with a fixed value of Spearman’s rho or Kendall’s tau. J. Math. Anal. Appl., to appear. Available at https://doi.org/10.1016/j.jmaa.2018.11.057.10.1016/j.jmaa.2018.11.057Search in Google Scholar
[9] Longin, F. and B. Solnik (2001). Extreme correlation of international equity markets. J. Finance 56(2), 649-676.10.1111/0022-1082.00340Search in Google Scholar
[10] McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Revised Edition. Princeton University Press.Search in Google Scholar
[11] Munroe, P., T. Ransford, and C. Genest (2010). A counterexample to a conjecture of Hutchinson and Lai. C. R. Math. Acad. Sci. Paris 348(5-6), 305-310 (in french).10.1016/j.crma.2010.01.026Search in Google Scholar
[12] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York.Search in Google Scholar
[13] Pickands, J. (1981). Multivariate extreme value distributions. Bull. Inst. Internat. Statist. 49(2), 859-878. With a discussion (894-902).Search in Google Scholar
[14] Salvadori, G., C. De Michele, N. T. Kottegoda, and R. Rosso (2007). Extremes in Nature - An Approach Using Copulas. Springer, Dordrecht.Search in Google Scholar
[15] Schreyer, M., R. Paulin, and W. Trutschnig (2017). On the exact region determined by Kendall’s τ and Spearman’s ρ. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79(2), 613-633.10.1111/rssb.12181Search in Google Scholar
[16] Sempi, C. (2011). Copulæ: Some mathematical aspects. Appl. Stoch. Models Bus. Ind. 27(1), 37-50.10.1002/asmb.835Search in Google Scholar
[17] Trutschnig, W., M. Schreyer, and J. Fernández-Sánchez (2016). Mass distributions of two-dimensional Extreme-Value copulas and related results. Extremes 19(3), 405-427.10.1007/s10687-016-0249-1Search in Google Scholar
© by Wolfgang Trutschnig, Thomas Mroz, published by De Gruyter
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.