Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access March 25, 2020

The gentleman copulist

An interview with Carlo Sempi

  • Christian Genest EMAIL logo and Matthias Scherer
From the journal Dependence Modeling

References

[1] Alsina, C. (2011). Berthold Schweizer (1929–2010). Int. J. Gen. Syst. 40(2), 129–130.10.1080/03081079.2010.537139Search in Google Scholar

[2] Alsina, C. (2011). On the legacy of Berthold Schweizer (1929–2010). Fuzzy Sets Syst. 168(1), 1–2.10.1016/j.fss.2010.12.006Search in Google Scholar

[3] Alsina, C., B. Schweizer, C. Sempi, and A. Sklar (1997). On the definition of a probabilistic inner product space. Rend. Mat. (7) 17(1), 115–127.Search in Google Scholar

[4] Alsina, C., B. Schweizer, and A. Sklar (1993). On the definition of a probabilistic normed space. Aequationes Math. 46(1–2), 91–98.10.1007/BF01834000Search in Google Scholar

[5] Bassan, B. and F. Spizzichino (2005). Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93(2), 313–339.10.1016/j.jmva.2004.04.002Search in Google Scholar

[6] Cuculescu, I. and R. Theodorescu (2001). Copulas: Diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46(6), 731–742.Search in Google Scholar

[7] Durante, F. and C. Sempi (2010). Copula theory: An introduction. In P. Jaworski, F. Durante, W.K. Härdle, and T. Rychlik (Eds.), Copula Theory and its Applications, pp. 3–31. Springer, Heidelberg.10.1007/978-3-642-12465-5_1Search in Google Scholar

[8] Durante, F. and C. Sempi (2016). Principles of Copula Theory. CRC Press, Boca Raton FL.Search in Google Scholar

[9] Forte, B. and C. Sempi (1976). Maximizing conditional entropies: A derivation of quantal statistics. Rend. Mat. (6) 9(4), 551– 566.Search in Google Scholar

[10] Genest, C. (2004). A conversation with Radu Theodorescu / Entretien avec Radu Theodorescu. Liaison 18(4), 38–48.Search in Google Scholar

[11] Genest, C. (2005). Preface. Insurance Math. Econom. 37(1), 1–2.10.1016/j.insmatheco.2005.07.001Search in Google Scholar

[12] Genest, C., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and C. Sempi (1999). A characterization of quasi-copulas. J. Multivariate Anal. 69(2), 193–205.10.1006/jmva.1998.1809Search in Google Scholar

[13] Grabisch, M., J.-L. Marichal, R. Mesiar, and E. Pap (2009). Aggregation Functions. Cambridge University Press.10.1017/CBO9781139644150Search in Google Scholar

[14] Lafuerza-Guillén, B. and P. Harikrishnan (2014). Probabilistic Normed Spaces. Imperial College Press, London.Search in Google Scholar

[15] Lafuerza-Guillén, B., J.A. Rodríguez-Lallena, and C. Sempi (1995). Completion of probabilistic normed spaces. Internat. J. Math. Math. Sci. 18(4), 649–652.10.1155/S0161171295000822Search in Google Scholar

[16] Lafuerza-Guillén, B., J.A. Rodríguez-Lallena, and C. Sempi (1997). Some classes of probabilistic normed spaces. Rend. Mat. (7) 17(2), 237–252.Search in Google Scholar

[17] Lafuerza-Guillén, B., J.A. Rodríguez-Lallena, and C. Sempi (1998). Probabilistic norms for linear operators. J. Math. Anal. Appl. 220(2), 462–476.10.1006/jmaa.1997.5810Search in Google Scholar

[18] Lafuerza-Guillén, B., J.A. Rodríguez-Lallena, and C. Sempi (1999). A study of boundedness in probabilistic normed spaces. J. Math. Anal. Appl. 232(1), 183–196.10.1006/jmaa.1998.6261Search in Google Scholar

[19] Menger, K. (1949). Theory of relativity and geometry. In P.A. Schilpp (Ed.), Albert Einstein: Philosopher-Scientist, pp. 559– 474. The Library of Living Philosophers, Evanston IL. Also in B. Schweizer, A. Sklar, K. Sigmund, P. Gruber, E. Hlawka, L. Reich, and L. Schmetterer (Eds.), Selecta Mathematica, pp. 551–566. Springer, New York. (2002)Search in Google Scholar

[20] Nelsen, R.B. (1999). An Introduction to Copulas. Springer, New York.10.1007/978-1-4757-3076-0Search in Google Scholar

[21] Nelsen, R.B., J.J. Quesada-Molina, B. Schweizer, and C. Sempi (1996). Derivability of some operations on distribution functions. In L. Rüschendorf, B. Schweizer, and M.D. Taylor (Eds.), Distribution Functions with Fixed Marginals and Related Topics, pp. 233–243. Institute of Mathematical Statistics, Hayward CA.10.1214/lnms/1215452622Search in Google Scholar

[22] Pistone, G. and C. Sempi (1995). An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist. 23(5), 1543–1561.10.1214/aos/1176324311Search in Google Scholar

[23] Saminger-Platz, S. and C. Sempi (2008). A primer on triangle functions I. Aequationes Math. 76(3), 201–240.10.1007/s00010-008-2936-8Search in Google Scholar

[24] Saminger-Platz, S. and C. Sempi (2010). A primer on triangle functions II. Aequationes Math. 80(3), 239–268.10.1007/s00010-010-0038-xSearch in Google Scholar

[25] Scarsini, M. and F. Spizzichino (2005). In memory of Bruno Bassan: Short biography and list of publications. Insurance Math. Econom. 37(1), 3–5.10.1016/j.insmatheco.2005.05.001Search in Google Scholar

[26] Schweizer, B. and A. Sklar (1974). Operations on distribution functions not derivable from operations on random variables. Studia Math. 52(1), 43–52.10.4064/sm-52-1-43-52Search in Google Scholar

[27] Schweizer, B. and A. Sklar (1983). Probabilistic Metric Spaces. North Holland, New York.Search in Google Scholar

[28] Sempi, C. (1985). Orlicz metrics derive from a single probabilistic metric. Stochastica 9(2), 181–184.Search in Google Scholar

[29] Sempi, C. (1986). Orlicz metrics for weak convergence of distribution functions. Riv. Mat. Univ. Parma (4) 12, 289–292.Search in Google Scholar

[30] Sempi, C. (2006). A short and partial history of probabilistic normed spaces. Mediterr. J. Math. 3(2), 283–300.10.1007/s00009-006-0078-6Search in Google Scholar

[31] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231 (in french).Search in Google Scholar

[32] Sprent, C. (1998). Statistics and mathematics - trouble at the interface? J. R. Stat. Soc. Ser. D (The Statistician) 47(2), 239– 244.10.1111/1467-9884.00128Search in Google Scholar

Received: 2019-12-14
Revised: 2020-02-13
Accepted: 2020-02-14
Published Online: 2020-03-25

© 2020 Christian Genest et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 4.2.2023 from https://www.degruyter.com/document/doi/10.1515/demo-2020-0002/html
Scroll Up Arrow